Advertisement

Journal of Polymers and the Environment

, Volume 20, Issue 1, pp 17–22 | Cite as

A Novel Biodegradable Green Poly(l-Aspartic Acid-Citric Acid) Copolymer for Antimicrobial Applications

  • N. Mithil KumarEmail author
  • K. VaraprasadEmail author
  • K. Madhusudana Rao
  • A. Suresh Babu
  • M. Srinivasulu
  • S. Venkata NaiduEmail author
Original Paper

Abstract

Poly (l-aspartic acid-citric acid) green copolymers were developed using thermal polymerization of aspartic acid (ASP) and citric acid (CA) followed by direct bulk melt condensation technique. Antibacterial properties of copolymer of aspartic acid based were investigated as a function of citric acid content. This study is focused on the microorganism inhibition performance of aspartic acid based copolymers. Results showed that inhibition properties increase with increasing citric acid content. Characterization of obtained copolymers was carried out with the help of infrared absorption spectra (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The antibacterial activity of copolymers against bacteria like E-coli, Bacillus and pseudomonas was investigated. The copolymers showed excellent antimicrobial activities against three types of microorganisms. Overall studies indicated that the above copolymers possess a broad wound dressing activity against above three types of bacteria and may be useful as antibacterial agents.

Keywords

Antibacterial activity Green copolymers and melt condensation technique 

Notes

Acknowledgments

N. Mithil Kumar thanks the University Grants Commission (UGC), Government of India, New Delhi for the financial support is the from meritorious fellowship.

References

  1. 1.
    Hater W (1998) Corrosion 98:213–222Google Scholar
  2. 2.
    Kim Ho H, Yeo Guw D, Yi Yil W. United States Patent 5548035Google Scholar
  3. 3.
    Ho G-H, Ho T-I, Hsieh K-H, Su Y-C, Lin P-Y, Yang J (2006) J Chin Chem Soc 53:1363–1384Google Scholar
  4. 4.
    Ross RJ, Low KC (1997) Mater Perform 36:53–57Google Scholar
  5. 5.
    Low KC, Wheeler AP, Koskan LP (1996) Adv Chem Ser 248:99–111CrossRefGoogle Scholar
  6. 6.
    Burke EM, Guo Y, Colon L, Rahima M, Veis A, Nancollas GH (2000) Col Surf B 17:49–57CrossRefGoogle Scholar
  7. 7.
    Roweton S, Huang SJ, Swift G (1997) Environ Polym Degrad 5:175–181Google Scholar
  8. 8.
    Cao H, Ma X, Sun S, Su H, Tan T, Alya AS, Abdel-Mohsena AM, Hebeisha A (2010) Polym Bull 64:623–632CrossRefGoogle Scholar
  9. 9.
    Miksic BA, Kharshan MA, Furman AY (2005) Presented at the European symposium on corrosion inhibitors (10 SEIC), Ferrara, Italy, September ctp 83Google Scholar
  10. 10.
    Swift G (1998) Polym Degra Stabil 59:19–24CrossRefGoogle Scholar
  11. 11.
    Xue1 Z, He J-X, Zhan Y-Z (2009) China textile, 5Google Scholar
  12. 12.
    Jyothi AN (2010) Compos Interfaces 17:165–174CrossRefGoogle Scholar
  13. 13.
    Shi R, Chen D, Liu Q, Wu Y, Xu X, Zhang L, Tian W (2009) Int J Mol Sci 10:4223–4256CrossRefGoogle Scholar
  14. 14.
    Alford DD, Wheeler HP, Pettigrew CA (1994) J Environ. Polym Degrad 2:225–236CrossRefGoogle Scholar
  15. 15.
    Wang X, Lee BI, Mann L (2002) Colloids Surf A Physicochem Eng Aspects 202:71–80CrossRefGoogle Scholar
  16. 16.
    Sanjay K, Singh RA (2001) Gross 786:2–40Google Scholar
  17. 17.
    Wood LL, Bayer AG (1996) United States Patent 5540863, 1–4Google Scholar
  18. 18.
    Namazi H, Adeli M (2003) Eur Polym J 39:1491–1500CrossRefGoogle Scholar
  19. 19.
    Djordjevic I, Choudhury NR, Dutta NK, Kumar S (2005) Polymer 50:1682–1691CrossRefGoogle Scholar
  20. 20.
    Yang J, Webb AR, Ameer GA (2004) Adv Mater 16:511–516CrossRefGoogle Scholar
  21. 21.
    Abd EI-Rehim HA, Mostafa TB, ABd EI-Monem B (2005) J Macromole Sci 42:853–867Google Scholar
  22. 22.
    Tran T, Zhang Y, Gyawali D, Yang J (2009) Recent Pat Biomed Eng 2:216–222CrossRefGoogle Scholar
  23. 23.
    Kim SII, Son CM, Jeon YS, Kim J-H (2009) Bull Korean Chem Soc 30:1–6CrossRefGoogle Scholar
  24. 24.
    ZhenHua Q, YongChang C, XiuRong W, Cheng S, YunJie L, ChongFang MA (2008) Sci chin Ser B Chem 51:695–699CrossRefGoogle Scholar
  25. 25.
    Nita LE, Chiriac AP, Bercea M (2010) Iordana Neamtu. Colloids Surf A Physicochem Eng Aspects 374:1–154Google Scholar
  26. 26.
    Wang A, Yin H, Lu H, Xue J, Ren M, Jiang T (2009) 25:12736–12741Google Scholar
  27. 27.
    Mithil Kumar N, Varaprasad K, Ramachanra Reddy G, Siva Mohan Reddy G, Siva Barathi Y, Venkata Subba Reddy G, Venkata Naidu S (2011) J Polym Environ 19:225–229CrossRefGoogle Scholar
  28. 28.
    Orhan M, Kut D, Gunesoglu C (2009) J Appl Poly Sci 111:344–1352CrossRefGoogle Scholar
  29. 29.
    Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P (2010) Polym Adv Technol 21:77–95Google Scholar
  30. 30.
    Orhan M, Kut D, Gunesoglu C (2009) J Appl Poly Sci 111:1344–1352CrossRefGoogle Scholar
  31. 31.
    Abd El-rehim HA, Mostafa TB, El-monem Bashind ABD (2005) J Macro Sci Part A Pure Appl Chem 42:853–867CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Synthetic Polymer Laboratory-II, Department of Polymer Science & TechnologySri Krishnadevaraya UniversityAnantapurIndia
  2. 2.Synthetic Polymer Laboratory-I, Department of Polymer Science & TechnologySri Krishnadevaraya UniversityAnantapurIndia
  3. 3.Ion Exchange (IND) LtdHyderabadIndia
  4. 4.Department of PhysicsRayalaseema UniversityKarnoolIndia
  5. 5.Department of MicrobiologySri Krishnadevaraya UniversityAnantapurIndia

Personalised recommendations