Journal of Polymers and the Environment

, Volume 19, Issue 2, pp 447–484 | Cite as

Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I

  • Shadpour Mallakpour
  • Zahra Rafiee
Original Paper


With the increasing emphasis on the environment and the need to find environmentally friendly solvent systems, ionic liquids (IL)s have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity; thus they have received much attention as green media for various chemistry processes. This report provides an extensive overview of use of ILs in polymers chemistry and technology.


Ionic liquids Green chemistry Polymers synthesis and modifications 



1-Allyl-3-methylimidazolium chloride


Tetrabutylphosphonium chloride


1-Butyl-2,3-dimethylimidazolium hexafluorophosphate


1-(2-Bromoisobutyryloxyethyl)-3-methylimidazolium hexafluorophosphate


1-Butylimidazolium tetrafluoroborate


1-Butylimidazolium p-toluenesulfonate


1-Butylimidazolium nitrate


1-Butyl-3-methylimidazolium tetrafluoroborate


1-Butyl-3-methylimidazolium chloride


1-Butyl-3-methylimidazolium tetrachloroaluminate


1-Butyl-3-methylimidazolium chlorostannate


1-Butyl-3-methylimidazolium dihydrogen phosphate


1-Butyl-1-methylimidazolium hydrogen sulphate


1-Butyl-3-methylimidazolium diethylene glycol monomethyl ether sulfate


1-Butyl-3-methylimidazolium dicyanamide


1-Butyl-3-methylimidazolium octyl sulfate


1-Butyl-3-methylimidazolium hexafluorophosphate


1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide


N-butyl-N-methyl morpholinium tetrafluoroborate


N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide


N-butylpyridinium chloride


N-butylpyridiunium tetrachloroaluminate


Tetrabutylammonium bromide




1-Octadecyl-3-methylimidazolium chloride


1-Alkyl-3-methylimidazolium hexafluorophosphate


N-alkylpyridinium bis(trifluoromethanesulfonyl)amide


N,N-diethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)amide


1-Dodecyl-3-methylimidazolium tetrafluoroborate


1-Ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)amide


1-Ethylimidazolium trifluoroacetate




1-Ethyl-3-methylimidazolium tetrachloroaluminate


1-Ethyl-2,3-dimethylimidazolium trifluoromethanesulfonate


1-Ethyl-3-methylimidazolium hexyl sulfate


1-Ethyl-3-methylimidazolium iodide


1-Ethyl-3-methylimidazolium bis(trifluoromethanesul-fonyl)amide


1-Ethyl-3-methylimidazolium tosylate


1-Ethyl-3-methylimidazolium ethylsulfate


Ethylammonium nitrate


1-Hexyl-3-methylimidazolium tetrafluoroborate


N-hexylpyridinium bis(trifluoromethanesulfonyl)amide


Imidazolium tetrafluoroborate


Trimethylsulfonium bis(trifluoromethanesulfonyl)amide


1,3-Dimethylimidazolium dimethylphosphate


1-Octyl-3-methylimidazolium tetrafluoroborate


1-Octyl-3-methylimidazolium hexafluorophosphate




1-Propyl-3-methylimidazolium hexafluorophosphate




Atom force microscopy






Attenuated total reflection Fourier transform infrared spectroscopy


Atom transfer radical polymerization


Butyl acrylate




n-butyl methacrylate


Benzoyl peroxide


Candida antarctica lipase B




Chain transfer agent




Diphenylhexyl lithium


Differential scanning calorimetry


Dye sensitised solar cells


Ethylene carbonate






Electrochemical quartz-crystal microbalance


Tetraethylammonium tetrafluoroborate


Glycidyl methacrylate


Group transfer polymerization


Bis(oxalato)boric acid




2-Hydroxypropyl methacrylate


Isophthalic acid


Ionic liquids


Indium tin oxide


Rate constant of propagation


Rate constant of termination


Methyl acrylate


Matrix-assisted laser desorption/ionization time-of-flight








Methyl methacrylate


Number-average molecular weight


Relative molecular mass


Menthyl methacrylate


Modified indium tin oxide


Molecular weight


Molecular weight distribution




Nitroxide-mediated polymerization
















Polydispersity index




Poly(ethylene oxide)


Poly(ethylene terephthalate)


Poly(3-(4-fluorophenyl) thiophene)




Pulsed laser polymerization




Poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene)






Poly(vinylidene fluoride-co-hexafluoropropylene)




Poly(trimethylene carbonate)


Rate of propagation


Rate of termination


Reversible addition-fragmentation chain transfer


Ring-opening graft polymerization


Ring-opening metathesis polymerization


Room-temperature ILs


Succinic acid


Small-angle X-ray scattering


Scanning electron microscopy






Glass-transition temperature




Thermogravimetric analysis








Vinyl acetate


1-(4-vinylbenzyl)-3-butyl imidazolium tetrafluoroborate




Wide angle X-ray scattering



We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), for financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Research (IUT) are also gratefully acknowledged.


  1. 1.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, second, completely revised and enlarged edition. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Brazel CS, Rogers RD (2005) Ionic liquids in polymer systems: solvents, additives, and novel applications, ACS symposium series 913. American Chemical Society, Washington, DCGoogle Scholar
  3. 3.
    Rogers RD, Seddon KR (2003) Ionic liquids as green solvents: progress and prospects, ACS symposium series 856. American Chemical Society, Washington, DCGoogle Scholar
  4. 4.
    Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications to green chemistry, ACS symposium series 818. American Chemical Society, Washington, DCGoogle Scholar
  5. 5.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083Google Scholar
  6. 6.
    The structure and properties of ionic melts, Discuss. Faraday Soc, 32, University Press, Aberdeen, (1962)Google Scholar
  7. 7.
    Bockris OM, Reddy AKN (1970) Modern electrochemistry. Plenum, New YorkGoogle Scholar
  8. 8.
    Walden P (1914) Bull Acad Imp Sci 1800Google Scholar
  9. 9.
    Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun (13):965–967Google Scholar
  10. 10.
    Wilkes JS (2002) Green Chem 4:73–80Google Scholar
  11. 11.
    Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Tetrahedron 61:1015–1060Google Scholar
  12. 12.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988–4992Google Scholar
  13. 13.
    Alammar T, Birkner A, Mudring AV (2009) Eur J Inorg Chem 2009(19):2765–2768Google Scholar
  14. 14.
    Dzyuba SV, Bartsch RA (2003) Angew Chem Int Ed 42:148–150Google Scholar
  15. 15.
    de Souza RF, Padilha JC, Goncalves RS, de Souza MO, Rault-Berthelot J (2007) J Power Sources 164:792–798Google Scholar
  16. 16.
    Ruiz-Angel MJ, Carda-Broch S, Berthod A (2006) J Chromatogr A 1119:202–208Google Scholar
  17. 17.
    Wang Q, Baker GA, Baker SN, Colon LA (2006) Analyst 131:1000–1005Google Scholar
  18. 18.
    Reid VR, Crank JA, Armstrong DW, Synovec RE (2008) J Sep Sci 31:3429–3436Google Scholar
  19. 19.
    Tran CD, Mejac I (2008) J Chromatogr A 1204:204–209Google Scholar
  20. 20.
    Arce A, Earle MJ, Rodriguez H, Seddon KR, Soto A (2009) Green Chem 11:365–372Google Scholar
  21. 21.
    Heitzman H, Young BA, Rausch DJ, Rickert P, Stepinski DC, Dietz ML (2006) Talanta 69:527–531Google Scholar
  22. 22.
    Solinas M, Pfaltz A, Cozzi PG, Leitner W (2004) J Am Chem Soc 126:16142–16147Google Scholar
  23. 23.
    Sang H, Liang P, Du D (2008) J Hazard Mater 154:1127–1132Google Scholar
  24. 24.
    Wang JZ, Chou SL, Chew SY, Sun JZ, Forsyth M, MacFarlane DR, Liu HK (2008) Solid State Ionics 179:2379–2382Google Scholar
  25. 25.
    Nakamoto H, Watanabe M (2007) Chem Commun (24):2539–2541Google Scholar
  26. 26.
    Devarajan T, Higashiya S, Dangler C, Rane-Fondacaro M, Snyder J, Haldar P (2009) Electrochem Commun 11:680–683Google Scholar
  27. 27.
    Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Electrochem Commun 6:566–570Google Scholar
  28. 28.
    Gamstedt H, Hagfeldt A, Kloo L (2009) Polyhedron 28:757–762Google Scholar
  29. 29.
    El Abedin SZ, Endres F (2009) Electrochim Acta 54:5673–5677Google Scholar
  30. 30.
    Chou CH, Chen JC, Tai CC, Sun IW, Zen JM (2008) Electroanal 20:771–775Google Scholar
  31. 31.
    Tempel DJ, Henderson PB, Brzozowski JR, Pearlstein RM, Cheng H (2008) J Am Chem Soc 130:400–401Google Scholar
  32. 32.
    Liu X, Zhou F, Liang YM, Liu WM (2006) Tribol Lett 23:191–196Google Scholar
  33. 33.
    Xia YQ, Murakami S, Nakano TM, Shi L, Wang HZ (2007) Wear 262:765–771Google Scholar
  34. 34.
    Laremore TN, Murugesan S, Park TJ, Avci FY, Zagorevski DV, Linhardt RJ (2006) Anal Chem 78:1774–1779Google Scholar
  35. 35.
    Sureshkumar M, Lee CK (2009) J Mol Catal B Enzym 60:1–12Google Scholar
  36. 36.
    Zhu H, Huang JF, Pan Z, Dai S (2006) Chem Mater 18:4473–4477Google Scholar
  37. 37.
    Yu N, Gong L, Song H, Liu Y, Yin D (2007) J Solid State Chem 180:799–803Google Scholar
  38. 38.
    Zhai Y, Zhang Q, Liu F, Gao G (2008) Mater Lett 62:4563–4565Google Scholar
  39. 39.
    Zhou Y, Antonietti M (2003) J Am Chem Soc 125:14960–14961Google Scholar
  40. 40.
    Ding K, Miao Z, Liu Z, Zhang Z, Han B, An G (2007) J Am Soc Chem 129:6362–6363Google Scholar
  41. 41.
    Biswas A, Shogren RL, Stevenson DG, Willett JL, Bhowmik PK (2006) Carbohydr Polym 66:546–550Google Scholar
  42. 42.
    Jing B, Chen X, Hao J, Qiu H, Chai Y, Zhang G (2007) Colloid Surface A Physicochem Eng Aspects 292:51–55Google Scholar
  43. 43.
    Ohno J (2005) Electrochemical aspects of ionic liquids. Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in CanadaGoogle Scholar
  44. 44.
    Mikami K (2005) Green reaction media in organic synthesis. Blackwell Publishing Ltd, Oxford, UKGoogle Scholar
  45. 45.
    Endres F, MacFarlane D, Abbott A (2008) Electrodeposition from ionic liquids. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimGoogle Scholar
  46. 46.
    Koel M (2009) Ionic liquids in chemical analysis. CRC Press, Taylor &Francis groupGoogle Scholar
  47. 47.
    Seddon KR (1997) J Chem Technol Biotechnol 68:351–356Google Scholar
  48. 48.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772–3789Google Scholar
  49. 49.
    Hagiwara R, Ito Y (2000) J Fluorine Chem 105:221–227Google Scholar
  50. 50.
    Earle MJ, Seddon KR (2000) Pure Appl Chem 72:1391–1398Google Scholar
  51. 51.
    Gordon CM (2001) Appl Catal A-Gen 222:101–117Google Scholar
  52. 52.
    Dupont J, de Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3692Google Scholar
  53. 53.
    Zhao D, Wu M, Kou Y, Min E (2002) Catal Today 74:157–189Google Scholar
  54. 54.
    Kragl U, Eckstein M, Kaftzik N (2002) Curr Opin Biotech 13:565–571Google Scholar
  55. 55.
    Olivier-Bourbigou H, Magna L (2002) J Mol Catal A Chem 182–183:419–437Google Scholar
  56. 56.
    Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Green Chem 4:147–151Google Scholar
  57. 57.
    van Rantwijk F, Sheldon RA (2007) Chem Rev 107:2757–2785Google Scholar
  58. 58.
    Baudequin C, Baudoux J, Levillain J, Cahard D, Gaumont AC, Plaquevent JC (2003) Tetrahedron Asymmetr 14:3081–3093Google Scholar
  59. 59.
    Kubisa P (2004) Prog Polym Sci 29:3–12Google Scholar
  60. 60.
    Poole CF (2004) J Chromatogr A 1037:49–82Google Scholar
  61. 61.
    Marsh KN, Boxall JA, Lichtenthaler R (2004) Fluid Phase Equilibria 219:93–98Google Scholar
  62. 62.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988–4992Google Scholar
  63. 63.
    Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275–297Google Scholar
  64. 64.
    Koel M (2005) Crit Rev Anal Chem 35:177–192Google Scholar
  65. 65.
    Yang Z, Pan W (2005) Enzyme Microb Tech 37:19–28Google Scholar
  66. 66.
    Flannigan DJ, Hopkins SD, Suslick KS (2005) J Organomet Chem 690:3513–3517Google Scholar
  67. 67.
    Lin IJB, Vasam CS (2005) J Organomet Chem 690:3498–3512Google Scholar
  68. 68.
    Sun J, Fujita SI, Arai M (2005) J Organomet Chem 690:3490–3497Google Scholar
  69. 69.
    Ding J, Armstrong DW (2005) Chirality 17:281–292Google Scholar
  70. 70.
    Kubisa P (2005) J Polym Sci Part A Polym Chem 43:4675–4683Google Scholar
  71. 71.
    Binnemans K (2005) Chem Rev 105:4148–4204Google Scholar
  72. 72.
    Winterton N (2006) J Mater Chem 16:4281–4293Google Scholar
  73. 73.
    Heintz A (2005) J Chem Thermodyn 37:525–535Google Scholar
  74. 74.
    Zhao H (2005) J Mol Catal B Enzym 37:16–25Google Scholar
  75. 75.
    Zhang J, Bond AM (2005) Analyst 130:1132–1147Google Scholar
  76. 76.
    Garcia MT, Gathergood N, Scammells PJ (2005) Green Chem 7:9–14Google Scholar
  77. 77.
    Baudequin C, Bregeon D, Levillain J, Guillen F, Plaquevent JC, Gaumont AC (2005) Tetrahedron Asymmetr 16:3921–3945Google Scholar
  78. 78.
    Pandey S (2006) Anal Chim Acta 556:38–45Google Scholar
  79. 79.
    Xue H, Verma R, Shreeve JM (2006) J Fluorine Chem 127:159–176Google Scholar
  80. 80.
    Cocalia VA, Gutowski KE, Rogers RD (2006) Coordin Chem Rev 250:755–764Google Scholar
  81. 81.
    Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580Google Scholar
  82. 82.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Green Chem 8:325–327Google Scholar
  83. 83.
    Durand J, Teuma E, Gomez MCR (2007) Chimie 10:152–177Google Scholar
  84. 84.
    El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Biomacromolecules 8:2629–2647Google Scholar
  85. 85.
    Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Chem Rev 107:2183–2206Google Scholar
  86. 86.
    Parvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665Google Scholar
  87. 87.
    Binnemans K (2007) Chem Rev 107:2592–2614Google Scholar
  88. 88.
    Dong Q, Muzny CD, Kazakov A, Diky V, Magee JW, Widegren JA, Chirico RD, Marsh KN, Frenkel MJ (2007) Chem Eng Data 52:1151–1159Google Scholar
  89. 89.
    Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) J Supercrit Fluid 43:150–180Google Scholar
  90. 90.
    Chowdhury S, Mohan RS, Scott JL (2007) Tetrahedron 63:2363–2389Google Scholar
  91. 91.
    Imperato G, Konig B, Chiappe C (2007) Eur J Org Chem 2007(7):1049–1058Google Scholar
  92. 92.
    Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150Google Scholar
  93. 93.
    Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237Google Scholar
  94. 94.
    Lei Z, Chen B, Li C, Liu H (2008) Chem Rev 108:1419–1455Google Scholar
  95. 95.
    Haumann M, Riisager A (2008) Chem Rev 108:1474–1497Google Scholar
  96. 96.
    Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Chem Rev 108:2015–2050Google Scholar
  97. 97.
    Hapiot P, Lagrost C (2008) Chem Rev 108:2238–2264Google Scholar
  98. 98.
    Ueki T, Watanabe M (2008) Macromolecules 41:3739–3749Google Scholar
  99. 99.
    Bica K, Gaertner P (2008) Eur J Org Chem 2008(19):3235–3250Google Scholar
  100. 100.
    Qiu Z, Texter J (2008) Curr Opin Colloid In 13:252–262Google Scholar
  101. 101.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) I J Chromatogr A 1184:6–18Google Scholar
  102. 102.
    Chen X, Li X, Hu A, Wang F (2008) Tetrahedron Asymmetr 19:1–14Google Scholar
  103. 103.
    Wei D, Ivaska A (2008) Anal Chim Acta 607:126–135Google Scholar
  104. 104.
    Weingrtner H (2008) Angew Chem Int Ed 47:654–670Google Scholar
  105. 105.
    Sledz P, Mauduit M, Grela K (2008) Chem Soc Rev 37:2433–2442Google Scholar
  106. 106.
    Greaves TL, Drummond CJ (2008) Chem Soc Rev 37:1709–1726Google Scholar
  107. 107.
    Abbott AP, Frisch G, Ryder KS (2008) Annu Rep Prog Chem Sect A Inorg Chem 104:21–45Google Scholar
  108. 108.
    Feng L, Chen Z (2008) J Mol Liq 142:1–5Google Scholar
  109. 109.
    Lu J, Yan F, Texter J (2009) Prog Polym Sci 34:431–448Google Scholar
  110. 110.
    Pavlinac J, Zupan M, Laali KK, Stavber S (2009) Tetrahedron 65:5625–5662Google Scholar
  111. 111.
    Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Chem Eng J 147:13–21Google Scholar
  112. 112.
    Yao C, Anderson JL (2009) J Chromatogr A 1216:1658–1712Google Scholar
  113. 113.
    Gu Y, Li G (2009) Adv Synth Catal 351:817–847Google Scholar
  114. 114.
    Zhou F, Liang Y, Liu W (2009) Chem Soc Rev 9:2590–2599Google Scholar
  115. 115.
    Kubisa P (2009) Prog Polym Sci 34:1333–1347Google Scholar
  116. 116.
    Carlin RT, Wilkes JS (1990) J Mol Catal 63:125–129Google Scholar
  117. 117.
    Carlin RT, Osteryoung A, Wilkes JS, Rovang J (1990) Inorg Chem 29:3003–3009Google Scholar
  118. 118.
    Chauvin Y, Gilbert B, Guibard I (1990) J Chem Soc Chem Commun (23):1715–1716Google Scholar
  119. 119.
    Ambler PW, Hodgson PKG, Stewart NJ (1993) European Patent EP 0558187Google Scholar
  120. 120.
    Abdul-Sada AAK, Ambler PW, Hodgson PKG, Seddon KR (1995) WO 9521871, BP Chem. Int. LtdGoogle Scholar
  121. 121.
    Atkins PM, Smith MR (1997) Ellis, B. EP 0791643, BP Chemicals LtdGoogle Scholar
  122. 122.
    Ambler PW, Hodgson PKG, Seddon KR (2000) WO 0032658, V. MurphyGoogle Scholar
  123. 123.
    Vijayaraghavan R, MacFarlane DR (2004) Chem Commun (6):700–701Google Scholar
  124. 124.
    Biedron T, Kubisa P (2004) J Polym Sci Part A Polym Chem 42:3230–3235Google Scholar
  125. 125.
    Biedron T, Bednarek M, Kubisa P (2004) Macromol Rapid Commun 25:878–881Google Scholar
  126. 126.
    Basko M, Biedron T, Kubisa P (2006) Macromol Symp 240:107–113Google Scholar
  127. 127.
    Vijayaraghavan R, MacFarlane DR (2007) Macromolecules 40:6515–6520Google Scholar
  128. 128.
    Basko M, Biedron T, Kubisa P (2009) J Polym Sci Part A Polym Chem 47:5251–5257Google Scholar
  129. 129.
    Biedron T, Kubisa P (2007) J Polym Sci Part A Polym Chem 45:4168–4172Google Scholar
  130. 130.
    Kokubo H, Watanabe M (2008) Polym Adv Technol 19:1441–1444Google Scholar
  131. 131.
    Vijayaraghavan R, Pringle JM, MacFarlane DR (2008) Eur Polym J 44:1758–1762Google Scholar
  132. 132.
    Hardacre C, Holbrey JD, Katdare SP, Seddon KR (2002) Green Chem 4:143–146Google Scholar
  133. 133.
    Klingshirn MA, Broker GA, Holbrey JD, Shaughnessy KH, Rogers RD (2002) Chem Commun (13):1394–1395Google Scholar
  134. 134.
    Wang HJ, Wang LL, Lam WS, Yu WY, Chan ASC (2006) Tetrahedron Asymmetr 17:7–11Google Scholar
  135. 135.
    Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Chem Commun (14):1237–1238Google Scholar
  136. 136.
    Biedron T, Kubisa P (2001) Macromol Rapid Commun 22:1237–1242Google Scholar
  137. 137.
    Harrisson S, Mackenzie SR, Haddleton DM (2002) Chem Commun 23:2850–2851Google Scholar
  138. 138.
    Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2002) Chem Commun 19:2226–2227Google Scholar
  139. 139.
    Zhao YL, Zhang JM, Jiang J, Chen CF, Xi F (2002) J Polym Sci Part A Polym Chem 40:3360–3366Google Scholar
  140. 140.
    Biedron T, Kubisa P (2002) J Polym Sci Part A Polym Chem 40:2799–2809Google Scholar
  141. 141.
    Hong K, Zhang H, Mays JW, Visser AE, Brazel CS, Holbrey JD, Reichert WM, Rogers RD (2002) Chem Commun (13):1368–1369Google Scholar
  142. 142.
    Zhang H, Hong K, Mays JW (2002) Macromolecules 35:5738–5741Google Scholar
  143. 143.
    Ma H, Wan X, Chen X, Zhou QF (2003) Polymer 44:5311–5316Google Scholar
  144. 144.
    Ma HY, Wan XH, Chen XF, Zhou QF (2003) Chin J Polym Sci 21:265–270Google Scholar
  145. 145.
    Biedron T, Kubisa P (2003) Polym Int 52:1584–1588Google Scholar
  146. 146.
    Zhao YL, Chen CF, Xi F (2003) J Polym Sci Part A Polym Chem 41:2156–2165Google Scholar
  147. 147.
    Ma HY, Wan XH, Chen XF, Zhou QF (2003) J Polym Sci Polym Chem 41(1):143–151Google Scholar
  148. 148.
    Zhang H, Hong K, Jablonsky M, Mays JW (2003) Chem Commun (12):1356–1357Google Scholar
  149. 149.
    Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2003) Eur Polym J 39(3):417–422Google Scholar
  150. 150.
    Cheng L, Zhang Y, Zhao T, Wang H (2004) Macromol Symp 216:9–16Google Scholar
  151. 151.
    Benton MG, Brazel CS (2004) Polym Int 53:1113–1117Google Scholar
  152. 152.
    Zhang HW, Hong K, Mays JW (2004) Polym Bull 52:9–16Google Scholar
  153. 153.
    Vygodskii YS, Melnik OA, Lozinskaya EI, Shaplov AS (2004) Polym Sci A 46:347–351Google Scholar
  154. 154.
    Ryan J, Aldabbagh F, Zetterlund PB, Yamada B (2004) Macromol Rapid Commun 25:930–934Google Scholar
  155. 155.
    Strehmel V, Laschewsky A, Kraudelt H, Wetzel H, Gornitz E (2005) In ACS Symposium Ser 913:17–36Google Scholar
  156. 156.
    Vygodskii YS, Melnik OA, Lozinskaya EI, Shaplov AS (2005) Polym Sci B 47:122–126Google Scholar
  157. 157.
    Susan MA, Kaneko T, Noda A, Watanabe M (2005) J Am Chem Soc 127:4976–4983Google Scholar
  158. 158.
    Percec V, Grigoras C (2005) J Polym Sci Part A Polym Chem 43:5609–5619Google Scholar
  159. 159.
    Biedron T, Kubisa P (2005) J Polym Sci Part A Polym Chem 43:3454–3459Google Scholar
  160. 160.
    Tang H, Tang J, Ding S, Radosz M, Shen Y (2005) J Polym Sci Part A Polym Chem 43:1432–1443Google Scholar
  161. 161.
    Ding S, Radosz M, Shen Y (2005) Macromolecules 38:5921–5928Google Scholar
  162. 162.
    Gong S, Ma H, Wan X (2006) Polym Int 55:1420–1425Google Scholar
  163. 163.
    Strehmel V, Laschewsky A, Wetzel H (2006) e-Polymers No. 11Google Scholar
  164. 164.
    Strehmel V, Laschewsky A, Wetzel H, Golrnitz E (2006) Macromolecules 39:923–930Google Scholar
  165. 165.
    Li D, Zhang Y, Wang H, Tang J, Wang B (2006) J Appl Polym Sci 102:4254–4257Google Scholar
  166. 166.
    Li D, Zhang YM, Wang HP, Tang JZ, Wang B (2006) J Appl Polym Sci 102:2199–2202Google Scholar
  167. 167.
    Li J, Zhang J, Liu Z (2006) J Polym Sci Part A Polym Chem 44:4420–4427Google Scholar
  168. 168.
    Li Z, Jiang J, Lei G, Gao D (2006) Polym Adv Technol 17:604–607Google Scholar
  169. 169.
    Woecht I, Schmidt-Naake G (2007) e-Polymers No. 100Google Scholar
  170. 170.
    Schmidt-Naake G, Woecht I, Schmalfuß A (2007) Macromol Symp 259:226–235Google Scholar
  171. 171.
    Strehmel V (2007) Macromol Symp 254:25–33Google Scholar
  172. 172.
    Maria S, Biedron T, Poli R, Kubisa P (2007) J Appl Polym Sci 105:278–281Google Scholar
  173. 173.
    Li N, Lu J, Xu Q, Xia X, Wang L (2007) J Appl Polym Sci 103:3915–3919Google Scholar
  174. 174.
    Guerrero-Sanchez C, Robert M, Hoogenboom R, Schubert US (2007) Macromol Rapid Commun 28:456–464Google Scholar
  175. 175.
    Vygodskii YS, Melnik OA, Lozinskaya EI, Shaplov AS, Malyshkina IA, Gavrilova ND, Lyssenko KA, Antipin MY, Golovanov DG, Kolyukov AA (2007) Polym Adv Technol 18:50–63Google Scholar
  176. 176.
    Ueda J, Yamaguchi H, Yamauchi T, Tsubokawa N (2007) J Polym Sci Part A Polym Chem 45:1143–1149Google Scholar
  177. 177.
    Zhang H, Zhang Y, Liu W, Wang H (2008) J Appl Polym Sci 110:244–252Google Scholar
  178. 178.
    Strehmel V, Wetzel H, Laschewsky A, Moldenhauer E, Klein T (2008) Polym Adv Technol 19:1383–1390Google Scholar
  179. 179.
    Xiao G, Zhang H, Hong X, Zhang G, Zhou X, Xia B (2008) J Appl Polym Sci 108:3683–3689Google Scholar
  180. 180.
    Hou C, Qu R, Ji C, Sun C, Wang C (2008) J Polym Sci Part A Polym Chem 46:2701–2707Google Scholar
  181. 181.
    Ueda J, Yamaguchi H, Shirai K, Yamauchi T, Tsubokawa N (2008) J Appl Polym Sci 107:3300–3305Google Scholar
  182. 182.
    Woecht I, Schmidt-Naake G, Beuermann S, Buback M, Garcia N (2008) J Polym Sci Part A Polym Chem 46:1460–1469Google Scholar
  183. 183.
    Zhang H, Zhang Y, Yang L, Wang HJ (2008) Donghua Univ (English edn.) 25: 423–431Google Scholar
  184. 184.
    Thurecht KJ, Gooden PN, Goel S, Tuck C, Licence P, Irvine DJ (2008) Macromolecules 41:2814–2820Google Scholar
  185. 185.
    Hou C, Qu R, Sun C, Ji C, Wang C, Ying L, Jiang N, Xiu F, Chen L (2008) Polymer 49:3424–3427Google Scholar
  186. 186.
    Puttick S, Irvine DJ, Licence P, Thurecht KJ (2009) J Mater Chem 19:2679–2682Google Scholar
  187. 187.
    Johnston-Hall G, Harjani JR, Scammells PJ, Monteiro MJ (2009) Macromolecules 42:1604–1609Google Scholar
  188. 188.
    Schmidt-Naake G, Woecht I, Schmalfuß A (2009) Chem Ing Techn 81:459–469Google Scholar
  189. 189.
    Woecht I, Schmidt-Naake G (2009) Macromol Symp 275–276:219–229Google Scholar
  190. 190.
    Gluck T, Woecht I, Schmalfuß A, Schmidt-Naake G (2009) Macromol Symp 275–276:230–241Google Scholar
  191. 191.
    Liang Y, Chen H, Zhou W (2009) J Macromole Sci Part A Pure Appl Chem 46:759–764Google Scholar
  192. 192.
    Chun-xiang L, Huai-yu Z, Ming-hua L, Shi-yu F, Jia-jun Z (2009) Carbohydr Polym 78:432–438Google Scholar
  193. 193.
    Chen H, Liang Y, Wang M, Lv P, Xuan Y (2009) Chem Eng J 147:297–301Google Scholar
  194. 194.
    Barth J, Buback M, Schmidt-Naake G, Woecht I (2009) Polymer 50:5708–5712Google Scholar
  195. 195.
    Zhao Q, Sun J, Chen S, Zhou Q (2010) J Appl Polym Sci 115:2940–2945Google Scholar
  196. 196.
    Vijayaraghavan R, MacFarlane DR (2004) Australian J Chem 57(2):129–133Google Scholar
  197. 197.
    Vijayaraghavan R, MacFarlane DR (2005) Chem Commun (9):1149–1151Google Scholar
  198. 198.
    Csihony S, Fischmeister C, Bruneau C, Horvath IT, Dixneuf PH (2002) New J Chem 26:1667–1670Google Scholar
  199. 199.
    Kadokawa J, Iwasaki Y, Tagaya H (2002) Macromol Rapid Commun 23:757–760Google Scholar
  200. 200.
    Liao LQ, Liu LJ, Shi DF, Zhang C (2005) Microwave ring opening polymerization of ε-caprolactone in ionic liquid. The 50th Anniversary of the Establishment of the Polymer Division Chinese Chemical Society Commemoratory Symposium (Beijing, China), H-P-809Google Scholar
  201. 201.
    Liao L, Liu L, Zhang C, Gong S (2006) Macromol Rapid Commun 27:2060–2064Google Scholar
  202. 202.
    Vygodskii YS, Shaplov AS, Lozinskaya EI, Filippov OA, Shubina ES, Bandari R, Buchmeiser MR (2006) Macromolecules 39:7821–7830Google Scholar
  203. 203.
    Guerrero-Sanchez C, Hoogenboom R, Schubert US (2006) Chem Commun (36):3797–3799Google Scholar
  204. 204.
    Mori H, Iwata M, Ito S, Endo T (2007) Polymer 48:5867–5877Google Scholar
  205. 205.
    Liao LQ, Zhang C, Gong SQ (2007) J Polym Sci Part A Polym Chem 45:5857–5863Google Scholar
  206. 206.
    Han H, Chen F, Yu J, Dang J, Ma Z, Zhang Y, Xie M (2007) J Polym Sci Part A Polym Chem 45:3986–3993Google Scholar
  207. 207.
    Xu Q, Wang Q, Liu L (2008) J Appl Polym Sci 107:2704–2713Google Scholar
  208. 208.
    Xu Q, Kennedy JF, Liu L (2008) Carbohydr Polym 72:113–121Google Scholar
  209. 209.
    Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y (2008) React Funct Polym 68:1601–1608Google Scholar
  210. 210.
    Zhu J, Wang WT, Wang XL, Li B, Wang YZ (2009) Carbohydr Polym 76:139–144Google Scholar
  211. 211.
    Gallagher MM, Rooney AD, Rooney JJ (2009) J Mol Catal A Chem 303:78–83Google Scholar
  212. 212.
    Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Biomacromolecules 10:2013–2018Google Scholar
  213. 213.
    Barrera-Rivera KA, Marcos-Fernandez A, Vera-Graziano R, Martinez-Richa A (2009) J Polym Sci Part A Polym Chem 47:5792–5805Google Scholar
  214. 214.
    Kobryanskii VM, Arnautov SA (1992) J Chem Soc Chem Commun (9):727–728Google Scholar
  215. 215.
    Kobryanskii VM, Arnautov SA (1993) Synth Met 55:1371–1376Google Scholar
  216. 216.
    Kobryanskii VM, Arnautov SA (1993) Synth Met 55:924–929Google Scholar
  217. 217.
    Arnautov SA (1997) Synth Met 84:295–296Google Scholar
  218. 218.
    Arnautov SA, Kobryanskii VM (2000) Macromol Chem Phys 201:809–814Google Scholar
  219. 219.
    Bicak N, Senkal FB, Sezer E (2005) Synth Met 155:105–109Google Scholar
  220. 220.
    Uyama H, Takamoto T, Kobayashi S (2002) Polym J 34:94–96Google Scholar
  221. 221.
    Nara SJ, Harjani JR, Salunkhe MM, Mane AT, Wadgaonkar PP (2003) Tetrahedron Lett 44:1371–1373Google Scholar
  222. 222.
    Marcilla R, De Geus M, Mecerreyes D, Duxbury CJ, Koning CE, Heise A (2006) Eur Polym J 42:1215–1221Google Scholar
  223. 223.
    Gorke JT, Okrasa K, Louwagie A, Kazlauskas RJ, Srienc FJ (2007) Biotechnol 132:306–313Google Scholar
  224. 224.
    Yoshizawa-Fujita M, Saito C, Takeoka Y, Rikukawa M (2008) Polym Adv Technol 19:1396–1400Google Scholar
  225. 225.
    Eker B, Zagorevski D, Zhu G, Linhardt RJ, Dordick JS (2009) J Mol Catal B Enzymatic 59:177–184Google Scholar
  226. 226.
    Chanfreau S, Mena M, Porras-Domınguez JR, Ramırez-Gilly M, Gimeno M, Roquero P, Tecante A, Barzana E (2010) Bioprocess Biosyst Eng 33:629–638Google Scholar
  227. 227.
    Oudard JF, Allendoerfer RD, Osteryoung RA (1988) J Electroanal Chem 241:231–246Google Scholar
  228. 228.
    Lere-Porte JP, Radi M, Chorro C, Petrissans J, Sauvajol JL, Gonbeau D, Pfister G, Louarn G, Lefrant S (1992) Synth Met 59:141–149Google Scholar
  229. 229.
    Goldenberg LM, Osteryoung RA (1994) Synth Met 64:63–68Google Scholar
  230. 230.
    Naudin E, Ho HA, Branchaud S, Breau L, Belanger D (2002) J Phys Chem B 106:10585–10593Google Scholar
  231. 231.
    Sekiguchi K, Atobe M, Fuchigami T (2002) Electrochem Commun 4:881–885Google Scholar
  232. 232.
    Sekiguchi K, Atobe M, Fuchigami T (2003) J Electroanal Chem 557:1–7Google Scholar
  233. 233.
    Randriamahazaka H, Plesse C, Teyssie D, Chevrot C (2003) Electrochem Commun 5(7):613–617Google Scholar
  234. 234.
    Randriamahazaka H, Plesse C, Teyssie D, Chevrot C (2004) Electrochem Commun 6:299–305Google Scholar
  235. 235.
    Zein El Abedin S, Borissenko N, Endres F (2004) Electrochem Commun 6(4):422–426Google Scholar
  236. 236.
    Pringle JM, Efthimiadis J, Howlett PC, Efthimiadis J, MacFarlane DR, Chaplin AB, Hall SB, Officer DL, Wallace GG, Forsyth M (2004) Polymer 45:1447–1453Google Scholar
  237. 237.
    Damlin P, Kvarnstrm C, Ivaska AJ (2004) Electroanal Chem 570(1):113–122Google Scholar
  238. 238.
    Danielsson P, Bobacka J, Ivaska A (2004) J Solid State Electrochem 8:809–817Google Scholar
  239. 239.
    Schneider O, Bund A, Ispas A, Borissenko N, El Abedin SZ, Endres F (2005) J Phys Chem B 109:7159–7168Google Scholar
  240. 240.
    Li MC, Ma CA, Liu BY, Jin ZM (2005) Electrochem Commun 7:209–212Google Scholar
  241. 241.
    Pringle JM, Forsyth M, MacFarlane DR, Wagner K, Hall SB, Officer DL (2005) Polymer 46(7):2047–2058Google Scholar
  242. 242.
    Wagner K, Pringle JM, Hall SB, Forsyth M, MacFarlane DR, Officer DL (2005) Synth Met 153:257–260Google Scholar
  243. 243.
    Liu BY, Xu DQ, Xu ZY (2005) Chinese J Chem 23:803–805Google Scholar
  244. 244.
    Zhang JL, Zhang XG, Xiao F, Hu FP (2005) J Colloid Interf Sci 287:67–71Google Scholar
  245. 245.
    Murray PS, Ralph SF, Too CO, Wallace GG (2006) Electrochim Acta 51:2471–2476Google Scholar
  246. 246.
    Wei D, Kvarnstrom C, Lindfors T, Ivaska A (2006) Electrochem Commun 8:1563–1566Google Scholar
  247. 247.
    Pang Y, Xu H, Li X, Ding H, Cheng Y, Shi G, Jin L (2006) Electrochem Commun 8:1757–1763Google Scholar
  248. 248.
    Zhang AJ, Qi XM, Du YF, Luo YW, Fang HJ, Lu JX (2006) Chinese J Chem 24:609–612Google Scholar
  249. 249.
    Pringle JM, Forsyth M, Wallace GG, MacFarlane DR (2006) Macromolecules 39:7193–7195Google Scholar
  250. 250.
    Dong B, Zheng L, Xu J, Liu H, Pu S (2007) Polymer 48:5548–5555Google Scholar
  251. 251.
    Zane D, Raffaele A, Curulli A, Appetecchi GB, Passerini S (2007) Electrochem Commun 9:2037–2040Google Scholar
  252. 252.
    Pang Y, Li X, Ding H, Shi G, Jin L (2007) Electrochim Acta 52:6172–6177Google Scholar
  253. 253.
    Ahmad S, Deepa M, Singh S (2007) Langmuir 23:11430–11433Google Scholar
  254. 254.
    Carstens T, Zein El Abedin S, Endres F (2008) ChemPhysChem 9:439–444Google Scholar
  255. 255.
    Liu K, Hu Z, Xue R, Zhang J, Zhu J (2008) J Power Sources 179:858–862Google Scholar
  256. 256.
    Biso M, Mastragostino M, Montanino M, Passerini S, Soavi F (2008) Electrochim Acta 53:7967–7971Google Scholar
  257. 257.
    Dong B, Xing Y, Xu J, Zheng L, Hou J, Zhao F (2008) Electrochim Acta 53:5745–5751Google Scholar
  258. 258.
    Dong B, Zhang S, Zheng L, Xu J (2008) J Electroanal Chem 619–620:193–196Google Scholar
  259. 259.
    Zhuang DX, Chen PY (2009) J Electroanal Chem 626:197–200Google Scholar
  260. 260.
    Zhang A, Chen J, Niu D, Wallace GG, Lu J (2009) Synth Met 159:1542–1545Google Scholar
  261. 261.
    Dong B, Song D, Zheng L, Xu J, Li N (2009) J Electroanal Chem 633:63–70Google Scholar
  262. 262.
    Arbizzani C, Soavi F, Mastragostino MJ (2006) J Power Sources 162:735–737Google Scholar
  263. 263.
    Liu Y, Wu G, Long D, Zhang G (2005) Polymer 46:8403–8409Google Scholar
  264. 264.
    Liu Y, Wu G, Long D, Qi M, Zhu Z (2005) Nucl Instrum Methods Phys Res B 236:443–448Google Scholar
  265. 265.
    Wu G, Liu Y, Long D (2005) Macromol Rapid Commun 26:57–61Google Scholar
  266. 266.
    Qi M, Wu G, Sha M, Liu Y (2008) Radiation Phys Chem 77:1248–1252Google Scholar
  267. 267.
    Harrisson S, Mackenzie SR, Haddleton DM (2003) Macromolecules 36(14):5072–5075Google Scholar
  268. 268.
    Vygodskii YS, Lozinskaya EI, Shaplov AS (2001) Doklady Chemistry 381(4–6):634 [Dokl Akad Nauk (Russian Edition) 381(5):634]Google Scholar
  269. 269.
    Vygodskii YS, Lozinskaya EI, Shaplov AS (2002) Macromol Rapid Commun 23:676–680Google Scholar
  270. 270.
    Vygodskii YS, Lozinskaya EI, Shaplov AS, Lyssenko KA, Antipin MY, Urman YG (2004) Polymer 45:5031–5045Google Scholar
  271. 271.
    Lozinskaya EI, Shaplov AS, Vygodskii YS (2004) Eur Polym J 40:2065–2075Google Scholar
  272. 272.
    Kricheldorf HR, Schwarz G, Fan SC (2004) High Perform Polym 16:543–555Google Scholar
  273. 273.
    Mallakpour S, Kowsari E (2005) J Polym Sci Part A Polym Chem 43:6545–6553Google Scholar
  274. 274.
    Lozinskaya EI, Shaplov AS, Kotseruba MV, Komarova LI, Lyssenko KA, Antipin MY, Golovanov DG, Vygodskii YS (2009) J Polym Sci Part A Polym Chem 44:380–394Google Scholar
  275. 275.
    Dali S, Lefebvre H, El Gharbi R, Fradet A (2006) J Polym Sci Part A Polym Chem 44(9):3025–3035Google Scholar
  276. 276.
    Mallakpour S, Kowsari E (2006) Iranian Polym J 15:239–247Google Scholar
  277. 277.
    Mallakpour S, Rafiee Z (2007) Polymer 48:5530–5540Google Scholar
  278. 278.
    Mallakpour S, Rafiee Z (2007) Eur Polym J 43:5017–5025Google Scholar
  279. 279.
    Mallakpour S, Taghavi M (2008) Polymer 49:3239–3249Google Scholar
  280. 280.
    Mallakpour S, Rafiee Z (2008) Polymer 49:3007–3013Google Scholar
  281. 281.
    Mallakpour S, Rafiee Z (2008) Polym Degrad Stab 93:753–759Google Scholar
  282. 282.
    Mallakpour S, Taghavi M (2008) J Appl Polym Sci 109:3603–3612Google Scholar
  283. 283.
    Mallakpour S, Kolahdoozan M (2008) Iranian Polym J 17(7):531–539Google Scholar
  284. 284.
    Mallakpour S, Taghavi M (2008) Polym J 40:1049–1059Google Scholar
  285. 285.
    Mallakpour S, Sepehri S (2008) React Funct Polym 68:1459–1466Google Scholar
  286. 286.
    Mallakpour S, Dinari M (2009) J Appl Polym Sci 112:244–253Google Scholar
  287. 287.
    Mallakpour S, Rafiee Z (2007) Eur Polym J 43:1510–1515Google Scholar
  288. 288.
    Mallakpour S, Rafiee Z (2007) High Perform Polym 19:427–438Google Scholar
  289. 289.
    Mallakpour S, Dinari M (2007) e-Polymers No. 035Google Scholar
  290. 290.
    Mallakpour S, Rafiee Z (2008) Polym Adv Technol 19:1015–1023Google Scholar
  291. 291.
    Mallakpour S, Yousefian H (2008) Polym Bull 60:191–198Google Scholar
  292. 292.
    Mallakpour S, Kolahdoozan M (2008) Polym J 40:513–519Google Scholar
  293. 293.
    Mallakpour S, Meratian S (2009) J Appl Polym Sci 111:1209–1215Google Scholar
  294. 294.
    Mallakpour S, Taghavi M (2009) React Funct Polym 69:206–215Google Scholar
  295. 295.
    Mallakpour S, Seyedjamali H (2009) Polym Bull 62(5):605–614Google Scholar
  296. 296.
    Tamada M, Hayashi T, Ohno H (2007) Tetrahedron Lett 48:1553–1557Google Scholar
  297. 297.
    Abdolmaleki A (2007) Iranian Polym J 16:741–751Google Scholar
  298. 298.
    Abdolmaleki A, Kazemi Varnamkhasti S (2009) J Appl Polym Sci 113:1935–1944Google Scholar
  299. 299.
    Alici B, Koytepe S, Seckin T (2007) Turk J Chem 31:569–578Google Scholar
  300. 300.
    Fu C, Liu Z (2008) Polymer 49:461–466Google Scholar
  301. 301.
    Shaplov AS, Lozinskaya EI, Odinets IL, Lyssenko KA, Kurtova SA, Timofeeva GI, Iojoiu C, Sanchez JY, Abadie MJM, Voytekunas VY, Vygodskii YS (2008) React Funct Polym 68:208–224Google Scholar
  302. 302.
    Zhu L, Huang CY, Patel YH, Wu J, Malhotra SV (2006) Macromol Rapid Commun 27:1306–1311Google Scholar
  303. 303.
    Gao H, Jiang T, Han B, Wang Y, Du J, Liu Z, Zhang J (2004) Polymer 45:3017–3019Google Scholar
  304. 304.
    Watanabe M, Yamada S, Ogata N (1995) Electrochim Acta 40:2285–2288Google Scholar
  305. 305.
    Noda A, Watanabe M (2000) Electrochim Acta 45:1265–1270Google Scholar
  306. 306.
    Mazurkiewicz JH, Innis PC, Wallace GG, MacFarlane DR, Forsyth M (2003) Synth Met 135–136:31–32Google Scholar
  307. 307.
    Pringle JM, Ngamnac O, Chenc J, Wallace GG, Forsyth M, MacFarlane MR (2006) Synth Met 156:979–983Google Scholar
  308. 308.
    Wan S, Zhang Y, Wang H (2009) Polym Adv Technol 20:857–862Google Scholar
  309. 309.
    Kamimura A, Yamamoto S (2007) Org Lett 9:2533–2535Google Scholar
  310. 310.
    Kamimura A, Yamamoto S (2008) Polym Adv Technol 19:1391–1395Google Scholar
  311. 311.
    Macleod S, Rosso RJ (2003) Adv Synth Catal 345:568–571Google Scholar
  312. 312.
    Mastrorilli P, Nobile CF, Gallo V, Suranna GP, Farinola G (2002) J Mol Catal A Chem 184:73–78Google Scholar
  313. 313.
    Trzeciak AM, Ziolkowski JJ (2004) Appl Organometal Chem 18:124–129Google Scholar
  314. 314.
    Andrzejewska E, Podgorska-Golubska M, Stepniak I, Andrzejewski M (2009) Polymer 50:2040–2047Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIran
  3. 3.Department of ChemistryYasouj UniversityYasoujIran

Personalised recommendations