Journal of Polymers and the Environment

, Volume 19, Issue 2, pp 546–558 | Cite as

Poly(vinyl alcohol-co-lactic acid)/Hydroxyapatite Composites: Synthesis and Characterization

  • Nita Tudorachi
  • Aurica P. ChiriacEmail author
Original Paper


There is a wide range of applications where calcium phosphate and hydroxyapatite (HA) are used as biomaterials, e.g. as synthetic bone grafts, coating on metal prostheses (like hip endoprostheses or dental implants) and drug carriers. In the study, the design and synthesis of composites based on poly(vinyl alcohol-co-lactic acid)/hydroxyapatite (PVA-co-LA/HA) with potential for biomedical applications, they are presented. The hydroxyapatite particles were surface-grafted with l(+)-lactic acid in the presence of manganese acetate as catalyst, resulting in modified hydroxyapatite (HAm) with improved capacity of bonding, respectively for the preparation of the composite based on PVA-co-LA/HAm. FT-IR spectra further confirmed the existence of PLA polymer on the surface of HA particles. In synthesis of PVA-co-LA copolymer the different molar ratios PVA/LA (2/1, 1/1, 1/2), toluene/water: 1/2 (as azeotrope solvent mixture) and manganese acetate as catalyst, were used. The composite materials were synthesized in situ with 10 wt% HA, and respectively HAm (reported to PVA and lactic acid components). The composite materials were characterized by FTIR spectroscopy, thermal analyses (DSC, DTG), 1H-NMR spectroscopy, particle size distribution and zeta potential.


Biomaterials Copolymers Poly(vinyl alcohol-co-lactic acid)/hydroxyapatite Composites 



This work was supported by CNCSIS–UEFISCSU, project number 466 PNII—IDEI code_995/2009: Researches in the Field of Polymeric Matrices Design for Sensitive Structures Romania.


  1. 1.
    Black J (1992) Biological Performance of Materials: Fundamentals of Biocompatibility. New York, Marcel DekkerGoogle Scholar
  2. 2.
    Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Biomaterials 25:4185CrossRefGoogle Scholar
  3. 3.
    Kim HW, Song JH, Kim HE (2005) Adv Funct Mater 15:1988CrossRefGoogle Scholar
  4. 4.
    Almirall A, Larrecq G, Delgado JAA (2004) Biomaterials 17:3671CrossRefGoogle Scholar
  5. 5.
    Geesink RGT, Manley MT (1993) Hydroxyapatite coatings in orthopeadic surgery. Raven Press, New YorkGoogle Scholar
  6. 6.
    Frayssinet P, Hardy D, Hanker JS, Giammara BL (1995) Cells Mater 5:125Google Scholar
  7. 7.
    Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5681CrossRefGoogle Scholar
  8. 8.
    Sheth M, Kumar RA, Dave V, Gross RA, McCarthy SPJ (1997) Appl Polym Sci 66:1495CrossRefGoogle Scholar
  9. 9.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel EJ (2003) Appl Polym Sci 90:731CrossRefGoogle Scholar
  10. 10.
    Blumm E, Owen AJ (1995) Polymer 36:4077CrossRefGoogle Scholar
  11. 11.
    Tsuji H, Mizuno A, Ikada YJ (1998) Appl Polym Sci 70:2259CrossRefGoogle Scholar
  12. 12.
    Yang JM, Chen HL, You JW, Hwang JC (1997) Polym J 29:657CrossRefGoogle Scholar
  13. 13.
    Taizo F, Yoshimura M, Tsunoru Y, Yasuo S, Masaki O, Takashi N (2000) Biomaterials 21:889CrossRefGoogle Scholar
  14. 14.
    Verheyen CCPM, de Wijn JR, van Blitterswijk CA, de Groot KJ (1992) Biomed Mater Res 26:1277CrossRefGoogle Scholar
  15. 15.
    Deng X, Hao J, Wang C (2001) Biomaterials 22:2867CrossRefGoogle Scholar
  16. 16.
    Dupraz AMP, de Wijn JR, van der Meer SV, de Groot K (1996) J Biomed Mater Res 30:231CrossRefGoogle Scholar
  17. 17.
    Borum-Nicholas L, Wilson O C Jr (2003) Biomaterials 24:3671CrossRefGoogle Scholar
  18. 18.
    Liu Q, de Wijn JR, Bakker D, van Blitterswijk CAJ (1996) Mater Sci Mater Med 7:551CrossRefGoogle Scholar
  19. 19.
    Liu Q, de Wijn JR, van Toledo M, Bakker D, van Blitterswijk CAJ (1998) Mater Sci Mater Med 9:23CrossRefGoogle Scholar
  20. 20.
    Qiu X, Hong Z, Hu J, Chen L, Chen X, Jing X (2005) Biomacromolecules 6:1193CrossRefGoogle Scholar
  21. 21.
    Wang X, Li Y, Wei J, de Groot K (2002) Biomaterials 23:4787CrossRefGoogle Scholar
  22. 22.
    Liu Q, de Wijn JR, de Groot K, van Blitterswijk CA (1998) Biomaterials 19:1067CrossRefGoogle Scholar
  23. 23.
    Dong G-C, Sun J-S, Yao C-H, Jiang George J, Huang C-W, Lin F-H (2001) Biomaterials 22:3179CrossRefGoogle Scholar
  24. 24.
    Liu Q, de Wijn JR, van Blitterswijk CAJ (1998) Biomed Mater Res 40:257CrossRefGoogle Scholar
  25. 25.
    Kikuchi M, Suetsugu Y, Tanaka J, Akao MJ (1997) Mater Sci Mater Med 8:361CrossRefGoogle Scholar
  26. 26.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Polymer 35:1068CrossRefGoogle Scholar
  27. 27.
    Ma PX, Schloo B, Mooney D, Langer RJ (1995) Biomed Mater Res 29:1587CrossRefGoogle Scholar
  28. 28.
    Marra K, Campbell P, DiMilla P, Kumta P, Mooney M, Szem J, Weiss L (1999) Mater Res Soc Symp Proc 550:155CrossRefGoogle Scholar
  29. 29.
    Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LEJ (1999) Biomed Mater Res 47:324CrossRefGoogle Scholar
  30. 30.
    Chiellini Emo, Corti Andrea, D’Antone Salvatore, Solaro Roberto (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28:963–1014CrossRefGoogle Scholar
  31. 31.
    Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981CrossRefGoogle Scholar
  32. 32.
    Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118CrossRefGoogle Scholar
  33. 33.
    Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X (2004) Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer 45:6699–6706CrossRefGoogle Scholar
  34. 34.
    Hong Z, Zhang P, Chaoliang H, Qiu X, Liu A, Chen L, Chen X, Jing X (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 26(32):6296–6304CrossRefGoogle Scholar
  35. 35.
    Zou B, Xiaohong L, Zhuang H, Cui W, Zou J, Chen J (2011) Degradation behaviors of electrospun fibrous composites of hydroxyapatite and chemically modified poly(Dl-lactide). Polym Degrad Stab 96:114–122CrossRefGoogle Scholar
  36. 36.
    Nakajima T, Wang R, Elovaara E, Gonzalez F, Gelboin H, Raunio H, Pelkonen O, Vainio H, Aoyama T (1997) Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Biochem Pharmacol 53(3):271–277CrossRefGoogle Scholar
  37. 37.
    Hanioka H, Hamamura M, Kakino K, Ogata H, Jinno H, Takahashi A, Nishimura T, Ando M (1995) Dog liver microsomal P450 enzyme-mediated toluene biotransformation. Xenobiotica 25(11):1207–1217CrossRefGoogle Scholar
  38. 38.
    Qiu X, Hong Z, Junli H, Chen L, Chen X, Jing X (2005) Biomacromolecules 6:1193–1199CrossRefGoogle Scholar
  39. 39.
    Hong Zhongkui, Qiu Xueyu, Sun Jingru, Deng Mingxiao, Chen Xuesi, Jing Xiabin (2004) Polymer 45(19):6699–6706CrossRefGoogle Scholar
  40. 40.
    Liu Y, Yuan M, Deng X (2003) Eur Polym J 39:977CrossRefGoogle Scholar
  41. 41.
    Gong Q, Wang L-Q, Tu K (2006) Carbohydr Polym 64:501CrossRefGoogle Scholar
  42. 42.
    Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Friedman HLJ (1964) Polym Sci Part C 6:183CrossRefGoogle Scholar
  44. 44.
    Friedman HLJ (1966) Polymer Lett 4:323CrossRefGoogle Scholar
  45. 45.
    Opfermann J (2000) J Therm Anal Calorim 60:641CrossRefGoogle Scholar
  46. 46.
    Kopinke D. F., Muckenzie (1997) J Anal Appl Pyrolysis: 40–41, 43–53Google Scholar
  47. 47.
    Xiao C, Liu H, Gao S, Zhang L (2000) Characterization of poly(vinyl alcohol)-konjac glucomannan blend films. Pure Appl Chem A37(9):1009–1021Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations