Advertisement

Journal of Polymers and the Environment

, Volume 18, Issue 4, pp 608–616 | Cite as

Mechanical and Thermal Properties of PLLA/PCL Modified Clay Nanocomposites

  • Wisam H. Hoidy
  • Emad A. Jaffar Al-Mulla
  • Khalid W. Al-Janabi
Original Paper

Abstract

Poly(l-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduced the domain size of phase separated particles. TEM outcomes have confirmed the intercalated type of nanocomposite. Additionally, a solution casting process has been used to prepare these nanocomposites and characterized to compare these results with the above process.

Keywords

Nanocomposite Clay modification Poly(l-lactic acid) Poly(caprolactone) PLLA/PCL 

Notes

Acknowledgements

The authors gratefully acknowledge Prof Dr. Mufeed Jalil Ewadh, Cultural Bureau, Embassy of the Republic of Iraq, Kuala Lumpur, Malaysia and Dr. Esam H. Hewayde, Department of Civil Engineering, College of Engineering, Al-Muthanna University for their helpful discussions and suggestions.

References

  1. 1.
    Franco CR et al (2004) Polym Degrad Stab 86:95–103CrossRefGoogle Scholar
  2. 2.
    Tsuji H et al (2001) Int J Biol Macromol 29:83–89CrossRefGoogle Scholar
  3. 3.
    Singh RP et al (2003) Carbohydr Res 338:1759–1769CrossRefGoogle Scholar
  4. 4.
    Chow WS et al (2009) J Therm Anal Calorim 95:627–632CrossRefGoogle Scholar
  5. 5.
    Pluta M et al (2002) J Appl Polym Sci 86:1497–1506CrossRefGoogle Scholar
  6. 6.
    Paul MA et al (2003) Polymer 44:443–450CrossRefGoogle Scholar
  7. 7.
    Chang JH et al (2003) J Polym Sci 41:94–99Google Scholar
  8. 8.
    Feijoo JL et al (2005) J Mater Sci 40:1785–1788CrossRefGoogle Scholar
  9. 9.
    Pantoustier N et al (2002) Polym Eng Sci 42:1928–1933CrossRefGoogle Scholar
  10. 10.
    Fukushima K et al (2009) Mater Sci Eng 29:1433–1441CrossRefGoogle Scholar
  11. 11.
    Di Y et al (2003) J Polym Sci 41:670–675Google Scholar
  12. 12.
    Lee SR et al (2002) Polymer 43:2495–2500CrossRefGoogle Scholar
  13. 13.
    Paula MA et al (2005) Polym Degrad Stab 87:535–542CrossRefGoogle Scholar
  14. 14.
    Wang L et al (1998) Polym Degrad Stab 59:161–168CrossRefGoogle Scholar
  15. 15.
    Vu YT et al (2001) J Appl Polym Sci 82:1391–1403CrossRefGoogle Scholar
  16. 16.
    Tyagi B et al (2006) Spectrochim Acta 64:273–278CrossRefGoogle Scholar
  17. 17.
    Huang X et al (2001) Macromolecules 34:3255–3260CrossRefGoogle Scholar
  18. 18.
    Ray SS et al (2005) Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  19. 19.
    Wu T et al (2009) Appl Clay Sci 45:105–110CrossRefGoogle Scholar
  20. 20.
    Chen CC et al (2003) Biomaterials 24:1167–1173CrossRefGoogle Scholar
  21. 21.
    Ray SS et al (2003) Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  22. 22.
    Yu Z et al (2007) Polymer 48:6439–6447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wisam H. Hoidy
    • 1
  • Emad A. Jaffar Al-Mulla
    • 2
  • Khalid W. Al-Janabi
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceUniversity Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Department of Chemistry, College of ScienceUniversity of KufaAnNajafIraq
  3. 3.Department of Chemistry, College of EducationUniversity of BaghdadBaghdadIraq

Personalised recommendations