Journal of Polymers and the Environment

, Volume 18, Issue 1, pp 45–56 | Cite as

Effect of Solvent Composition on Porosity, Surface Morphology and Thermal Behavior of Metal Alginate Prepared from Algae (Undaria pinnatifida)

  • Tara Sankar Pathak
  • Jung-Ho Yun
  • Se-Jong Lee
  • Dae-Jin Baek
  • Ki-Jung Paeng
Original Paper


Alginates, extracted from algae are linear unbranched polymers containing β-(1→4)-linked d-mannuronic acid (M) and α-(1→4)-linked l-guluronic acid (G) residues. The conversion of alginic acid into the metal alginate is confirmed using FTIR spectroscopy. Asymmetric and symmetric stretching of free carboxyl group present in metal alginate occurs almost at the same position in various solvent compositions. Total intrusion volume of metal alginate prepared in propanol (0.0742 mL/g) is greater compared to those in ethanol (0.0648 mL/g) and methanol (0.0393 mL/g) as solvent. Surface morphology as well as porosity and pore size distribution of metal alginate are greatly influenced by solvent. It can be seen from thermal analysis results that calcium alginate prepared using different solvent compositions started decomposing at 100 °C, but rapid degradation started around 200 °C. The results showed a stepwise weight loss during thermal sweep, indicating different types of reactions during degradation. First and second step of rapid degradation was situated around 200–300 and 300–550 °C, respectively; whereas the final step is situated around 550–650 °C. The trend of degradation was similar for all the solvents, although the amount of final residue varied from one solvent to another. At the same time, lower thermal stability was also observed with higher heating rates. Additionally, a kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive first order reactions.


Metal alginate Porosity Surface morphology Thermal behavior Kinetic analysis 



This study was supported by a Grant of Korea Institute of Marine Science & Technology Promotion (KIMST), South Korea.


  1. 1.
    Muzzarelli RAA (1973) Natural chelating polymers International series of monographs in analytical chemistry. Pergamon Press, Oxford, UKGoogle Scholar
  2. 2.
    Konishi Y, Asai S, Midoh Y, Oku M (1993) Sep Sci Technol 28(9):1691–1702CrossRefGoogle Scholar
  3. 3.
    Mimura H, Ohta H, Akiba K, Onodera Y (2001) J Radioanal Nucl Chem 247(1):33–38CrossRefGoogle Scholar
  4. 4.
    Rees DA, Welsh EJ (1977) Angew Chem Int Ed Engl 16(4):214–224CrossRefGoogle Scholar
  5. 5.
    Strand KA, Boe A, Dalberg PS, Sikkeland T, Smidsrod O (1982) Macromolecules 15:570–579CrossRefGoogle Scholar
  6. 6.
    Timmins P, Delargy AM, Minchom CM, Howard R (1992) Eur J Pharm Biopharm 38:113–118Google Scholar
  7. 7.
    Aslani P, Kennedy RA (1996) J Control Release 42:75–82CrossRefGoogle Scholar
  8. 8.
    Sabra W, Deckwer WD (2005) In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility. Marcel Dekker, New York, p 515Google Scholar
  9. 9.
    Stanford P, Baird J (1983) The polysaccharides. Academic press, New YorkGoogle Scholar
  10. 10.
    Wang ZY, Zhang QZ, Konno M, Saito S (1991) Chem Phys Lett 186:463–466CrossRefGoogle Scholar
  11. 11.
    Chanda SK, Hirst EL, Percival BGV, Ross AG (1952) J Chem Soc 1833–1837Google Scholar
  12. 12.
    Chan LW, Lee HY, Heng PWS (2002) Int J Pharm 242:259–262CrossRefGoogle Scholar
  13. 13.
    Farrell P, Fletch RL (2006) J Exp Marine Biol Ecol 334(2):236–243CrossRefGoogle Scholar
  14. 14.
    Sartori C, Finch DS, Ralph B (1997) Polymer 38(1):43–51CrossRefGoogle Scholar
  15. 15.
    Pathak TS, Yun JH, Lee SJ, Baek DJ, Paeng KJ (2009) Carbohydr Polym 78(4):717–724CrossRefGoogle Scholar
  16. 16.
    Nava Saucedo JE, Audras B, Jan S, Bazinet CE, Barbotin JN (1994) FEMS Microbiol Rev 14:93–98CrossRefGoogle Scholar
  17. 17.
    Velings NM, Mestdagh MM (1995) Polym Gels Netw 3:311–330CrossRefGoogle Scholar
  18. 18.
    Zheng H (1997) Carbohydr Res 302(1–2):97–101CrossRefGoogle Scholar
  19. 19.
    Ju HK, Kim SY, Lee YM (2001) Polymer 42:6851–6857CrossRefGoogle Scholar
  20. 20.
    Lee KY, Mooney DJ (2001) Chem Rev 101:1869–1879CrossRefGoogle Scholar
  21. 21.
    Smidsrod O (1974) Faraday Discuss Chem Soc 57:263–274CrossRefGoogle Scholar
  22. 22.
    Grasdalen H, Larsen B, Smidsrod O (1979) Carbohydr Res 68:23–31CrossRefGoogle Scholar
  23. 23.
    Grasdalen H, Larsen B, Smidsrod O (1981) Carbohydr Res 89(2):179–191CrossRefGoogle Scholar
  24. 24.
    Ouwerx C, Velings N, Mestdagh MM, Axelos MAV (1998) Polym Gels Netw 6(5):393–408CrossRefGoogle Scholar
  25. 25.
    Bajpai SK, Sharma S (2004) React Funct Polym 59(2):129–140CrossRefGoogle Scholar
  26. 26.
    Martinsen A, Storro I, Skjak-Break G (1992) Biotechnol Bioeng 39:186–194CrossRefGoogle Scholar
  27. 27.
    Estape D, Godia F, Sola C (1992) Enzyme Microb Technol 14:396–401CrossRefGoogle Scholar
  28. 28.
    Andreopoulos A (1987) Biomaterials 8:397–400CrossRefGoogle Scholar
  29. 29.
    Mehmetoglu U (1990) Enzyme Microb Technol 12:124–126CrossRefGoogle Scholar
  30. 30.
    Hannoun B, Stephanopoulos G (1986) Biotechnol Bioeng 28:829–835CrossRefGoogle Scholar
  31. 31.
    Longo M, Novella I, Garcia L, Diaz M (1992) Enzyme Microb Technol 14:586–590CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Pathak TS, Kim JS, Lee SJ, Baek DJ, Paeng KJ (2008) J Polym Environ 16(3):198–204CrossRefGoogle Scholar
  34. 34.
    Kim SJ, Yoon SG, Kim SI (2004) J Appl Polym Sci 91:3705–3709CrossRefGoogle Scholar
  35. 35.
    Brandrup J, Immergut EH, Bloch D, Abe A, Grulke EA (1999) In: Grulke EA (ed) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  36. 36.
    Adoor SG, Prathab B, Manjeshwar LS, Aminabhavi TM (2007) Polymer 48:5417–5430CrossRefGoogle Scholar
  37. 37.
    Coats AW, Redfern JF (1964) Nature 201(4914):68–69CrossRefGoogle Scholar
  38. 38.
    Zhou L, Wang Y, Huang Q, Cai J (2006) Fuel Process Technol 87:963–969CrossRefGoogle Scholar
  39. 39.
    Lazaro MJ, Moliner R, Suelves I (1998) J Anal Appl Pyrolysis 47:111–125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tara Sankar Pathak
    • 1
  • Jung-Ho Yun
    • 1
  • Se-Jong Lee
    • 2
  • Dae-Jin Baek
    • 3
  • Ki-Jung Paeng
    • 1
  1. 1.Department of ChemistryYonsei UniversityWonjuSouth Korea
  2. 2.Department of Materials EngineeringKyungsung UniversityBusanSouth Korea
  3. 3.Department of ChemistryHanseo UniversitySeosanSouth Korea

Personalised recommendations