Journal of Polymers and the Environment

, Volume 16, Issue 4, pp 221–229 | Cite as

Poly(hydroxyalkanoate) Biosynthesis from Crude Alaskan Pollock (Theragra chalcogramma) Oil

Original Paper


Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the percent of the cell mass that is polymer) ranging from 6 to 53% of the cell dry weight (CDW). Two strains, P. oleovorans NRRL B-778 (P = 27%) and P. oleovorans NRRL B-14682 (P = 6%), synthesized poly(3-hydroxybutyrate) (PHB) with number average molecular weights (Mn) of 206,000 g/mol and 195,000 g/mol, respectively. Four strains, P. oleovorans NRRL B-14683 (P = 52%), P. resinovorans NRRL B-2649 (P = 53%), P. corrugata 388 (P = 43%), and P. putida KT2442 (P = 39%), synthesized medium-chain-length PHA (mcl-PHA) polymers with Mn values ranging from 84,000 g/mol to 153,000 g/mol. All mcl-PHA polymers were primarily composed of 3-hydroxyoctanoic acid (C8:0) and 3-hydroxydecanoic acid (C10:0) amounting to at least 75% of the total monomers present. Unsaturated monomers were also present in the mcl-PHA polymers at concentrations between 13% and 16%, providing loci for polymer derivatization and/or crosslinking.


Biopolymer Medium-chain length PHA Pollock oil Poly(3-hydroxybutyrate) Pseudomonas 


  1. 1.
    Crapo C, Bechtel P (2003) In: Bechtel PJ (ed) 2002 Conference proceedings. University of Alaska, pp 105–119Google Scholar
  2. 2.
    Bower CK, Avena-Bustillos RJ, Olsen CW, McHugh TH, Bechtel PJ (2006) J Food Sci 71:M141–M145CrossRefGoogle Scholar
  3. 3.
    Avena-Bustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, McHugh TH (2006) J Food Sci 71:E202–E207CrossRefGoogle Scholar
  4. 4.
    Steinbuchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  5. 5.
    Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Environ Microbiol 56:3354–3359Google Scholar
  6. 6.
    Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536–544Google Scholar
  7. 7.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Appl Environ Microbiol 54:1977–1982Google Scholar
  8. 8.
    Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Ind Crops Prod 1:157–163CrossRefGoogle Scholar
  9. 9.
    Tan IKP, Sudesh Kumar K, Theanmalar M, Gan SN, Gordon BIII (1997) Appl Microbiol Biotechnol 47:207–211CrossRefGoogle Scholar
  10. 10.
    Casini E, de Rijk TC, de Waard P, Eggink G (1997) J Environ Polym Degrad 5:153–158Google Scholar
  11. 11.
    Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Macromolecules 27:878–880CrossRefGoogle Scholar
  12. 12.
    Ashby RD, Foglia TA (1998) Appl Microbiol Biotechnol 49:431–437CrossRefGoogle Scholar
  13. 13.
    Solaiman DKY, Ashby RD, Foglia TA (2002) Curr Microbiol 44:189–195CrossRefGoogle Scholar
  14. 14.
    Braunegg G, Bona R, Koller M (2004) Polym-Plastics Technol Engineer 43:1779–1793CrossRefGoogle Scholar
  15. 15.
    Ashby RD, Solaiman DKY, Foglia TA (2004) J Polym Environ 12:105–112CrossRefGoogle Scholar
  16. 16.
    Solaiman DKY, Ashby RD, Hotchkiss AT Jr, Foglia TA (2006) Biotechnol Lett 28:157–162CrossRefGoogle Scholar
  17. 17.
    Zinn M, Witholt B, Egli T (2001) Adv Drug Deliv Rev 53:5–21CrossRefGoogle Scholar
  18. 18.
    Lenz RW, Marchessault RH (2005) Biomacromolecules 6:1–8CrossRefGoogle Scholar
  19. 19.
    Ashby RD, Foglia TA, Solaiman DKY, Liu C-K, Nuñez A, Eggink G (2000) Int J Biol Macromol 27:355–361CrossRefGoogle Scholar
  20. 20.
    Ashby RD, Solaiman DKY, Foglia TA (2002) J Ind Microbiol Biotechnol 28:147–153CrossRefGoogle Scholar
  21. 21.
    Ashby RD, Solaiman DKY, Foglia TA (2005) Biomacromolecules 6:2106–2112CrossRefGoogle Scholar
  22. 22.
    Ashby RD, Solaiman DKY, Foglia TA, Liu C-K (2001) Biomacromolecules 2:211–216CrossRefGoogle Scholar
  23. 23.
    Ashby RD, Solaiman DKY, Foglia TA (2002) Appl Microbiol Biotechnol 60:154–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Fats, Oils and Animal Coproducts Research Unit, U.S. Department of Agriculture, Agricultural Research ServiceEastern Regional Research CenterWyndmoorUSA

Personalised recommendations