Journal of Polymers and the Environment

, Volume 16, Issue 4, pp 286–297 | Cite as

Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization

  • Emmanuelle Schwach
  • Jean-Luc Six
  • Luc AvérousEmail author
Original Paper


Finding plastic substitutes based on sustainability, especially for short-term packaging and disposable applications has aroused scientific interest for many years. Starch may be a substitute for petroleum based plastics but it shows severe limitations due to its water sensitivity and rather low mechanical properties. To overcome these weaknesses and to maintain the material biodegradability, one option is to blend plasticized starch with another biodegradable polymer. To improve both the compatibility between the main phases and the performance of the final blend, different compatibilization strategies are reported in literature. However, the relative efficiency of each strategy is not widely reported. This paper presents three different strategies: in situ (i) formation of urethane linkages; (ii) coupling with peroxide between starch and PLA, and (iiii) the addition of PLA-grafted amylose (A-g-PLA) which has been elaborated ex situ and carefully analyzed before blending. This study compares the effect of each compatibilization strategy by investigating mechanical and thermal properties of each blend. Compatibilizing behavior of the A-g-PLA is demonstrated, with a significant increase (up to 60%) in tensile strength of starch/PLA blend with no decrease in elongation at failure.


Blend Compatibilization Graft copolymer Poly(lactic acid) Starch 



This work was funded by Europol’Agro through a research program devoted to the development of packaging materials based on agricultural resources. The authors want to Thank Dr. Peter Torley and Dr. Peter Halley (University of Queensland—Australia) for their important contributions.


  1. 1.
    Averous L (2004) J Macromol Sci-Polym Rev C44:231–274Google Scholar
  2. 2.
    Vansoest JJG (1997) Agro Food Industry Hi-Tech 8:17–22Google Scholar
  3. 3.
    Stepto RFT (2000) Macromol Symp 152:73–82CrossRefGoogle Scholar
  4. 4.
    Averous L (2008) In: Begacem N, Gandini A (eds) Monomers, Polymers and Composites from renewable resources. Elsevier Limited Publication. Chap. 21, pp 433–450Google Scholar
  5. 5.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864CrossRefGoogle Scholar
  6. 6.
    Garlotta D (2001) J Environ Polym Degr 9:63–84CrossRefGoogle Scholar
  7. 7.
    Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R (1999) Polym Eng Sci 39:1311–1319CrossRefGoogle Scholar
  8. 8.
    Sodergard A, Stolt M (2002) Prog Polym Sci 27:1123–1163CrossRefGoogle Scholar
  9. 9.
    Schwach E, Averous L (2004) Polym Int 53:2115–2124CrossRefGoogle Scholar
  10. 10.
    Schwach E (2004) Etude des systémes multiphasés biodégradables à base d’amidon plastifié. In: PhD Thesis, 222, URCAGoogle Scholar
  11. 11.
    Dubois P, Narayan R (2003) Macromol Symp 198:233–243CrossRefGoogle Scholar
  12. 12.
    Guan JJ, Eskridge KM, Hanna MA (2005) Ind Crops Prod 22:109–123CrossRefGoogle Scholar
  13. 13.
    Guan J, Hanna MA (2005) Ind Eng Chem Res 44:3106–3115CrossRefGoogle Scholar
  14. 14.
    Huneault MA, Li HB (2007) Polymer 48:270–280CrossRefGoogle Scholar
  15. 15.
    Wu CS (2005) Macromol Biosci 5:352–361CrossRefGoogle Scholar
  16. 16.
    Wang H, Sun XZ, Seib P (2001) J Appl Polym Sci 82:1761–1767CrossRefGoogle Scholar
  17. 17.
    Ohkita T, Lee SH (2004) J Adhes Sci Technol 18:905–924CrossRefGoogle Scholar
  18. 18.
    Jun CL (2000) J Environ Polym Degr 8:33–37CrossRefGoogle Scholar
  19. 19.
    Zhang JF, Sun XZ (2004) Macromol Biosci 4:1053–1060CrossRefGoogle Scholar
  20. 20.
    Zhang JF, Sun XZ (2004) J Appl Polym Sci 94:1697–1704CrossRefGoogle Scholar
  21. 21.
    Zhang JF, Sun XZ (2004) Biomacromolecules 5:1446–1451CrossRefGoogle Scholar
  22. 22.
    Gong QX, Tu KH, Wang LQ (2006) Acta Polym Sin 1045–1049Google Scholar
  23. 23.
    Gong QX, Wang LQ, Tu KH (2006) Carbohydr Polym 64:501–509CrossRefGoogle Scholar
  24. 24.
    Martin O, Averous L (2001) Polymer 42:6209–6219CrossRefGoogle Scholar
  25. 25.
    Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76:53–59CrossRefGoogle Scholar
  26. 26.
    Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41:4157–4167CrossRefGoogle Scholar
  27. 27.
    Averous L, Fauconnier N, Moro L, Fringant C (2000) J Appl Polym Sci 76:1117–1128CrossRefGoogle Scholar
  28. 28.
    Couchman P, Karasz F (1978) Macromolecules 11:117CrossRefGoogle Scholar
  29. 29.
    Martin O, Averous L, Della Valle G (2003) Carbohydr Polym 53:169–182CrossRefGoogle Scholar
  30. 30.
    Joseph S, Thomas S (2002) J Polym Sci Pol Phys 40:755–764CrossRefGoogle Scholar
  31. 31.
    Willemse RC, Speijer A, Langeraar AE, De Boer AP (1999) Polymer 40:6645–6650CrossRefGoogle Scholar
  32. 32.
    Brockway CE, Seaberg PA (1967) J Polym Sci Part A-1: Polym Chem 5:1313–1326CrossRefGoogle Scholar
  33. 33.
    Nouvel C, Dubois P, Dellacherie E, Six JL (2004) J Polym Sci Pol Chem 42:2577–2588CrossRefGoogle Scholar
  34. 34.
    Choi EJ, Kim CH, Park JK (1999) J Polym Sci Pol Phys 37:2430–2438CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Emmanuelle Schwach
    • 1
  • Jean-Luc Six
    • 2
  • Luc Avérous
    • 3
    Email author
  1. 1.UMR INRA/URCA (FARE)Reims Cedex 2France
  2. 2.LCPM, UMR 7568 CNRS-INPL, Nancy University, ENSICNancyFrance
  3. 3.LIPHT-ECPM, UMR 7165, University Louis PasteurStrasbourg Cedex 2France

Personalised recommendations