Advertisement

Journal of Polymers and the Environment

, Volume 16, Issue 3, pp 205–212 | Cite as

Biodegradability of Poly (lactic acid), Preparation and Characterization of PLA/Gum Arabic Blends

  • John M. Onyari
  • Francis Mulaa
  • Joshua Muia
  • Paul Shiundu
Original Paper

Abstract

In this study, the biodegradation of PLA films using microorganisms from Lake Bogoria (Kenya) were investigated. The biodegradation tests done using certain strains of thermophilic bacteria showed faster biodegradation rates and demonstrated temperature dependency. The biodegradation of the PLA films was studied using Gel Permeation Chromatography (GPC) and light microscopy. The biodegradation of PLA was demonstrated by decrease in molecular weight. The preparation and characterization of PLA/Gum Arabic blends were also investigated using DSC, TGA, TMA and NMR. In summary, the results obtained in this research show that PLA films undergo fast biodegradation using thermophiles isolated from Lake Bogoria. The PLA/GA blends studies show it is possible to prepare films of varying hydrophobic–hydrophilic properties for various applications.

Keywords

Polylactic acid Gum Arabic Blends Biodegradation Characterization 

Notes

Acknowledgments

The authors acknowledge Prof. Samuel J. Huang of IMS, University of Connecticut for providing PLA used in this study. The authors wish to acknowledge the travel grant from UNESCO to the Institute of Polymer Science, University of Stellenbosh, Cape Town, South Africa and to the Director, Prof Ron Sanderson and laboratory staff for use of their facilities for some analysis. We also thank the Chairmen of the Departments of Chemistry and Biochemistry, University of Nairobi for access to facilities.

References

  1. 1.
    Huang SJ, Onyari JM (1996) JMS Pure Appl Chem A33(5):571–584CrossRefGoogle Scholar
  2. 2.
    Bendix D (1998) Polym Degrad and Stab 59:129–135CrossRefGoogle Scholar
  3. 3.
    Amecke B, Bendix D, Entenmann G (1995) In: Wise DL (ed) Encyclopedic handbook of biomaterials and bioengineering, Part A: materials, vol 2. Marcel Dekker, New York, pp 977–1007Google Scholar
  4. 4.
    Jun L, Wenchua LX, Cheng HN, Nichol RG, Wang PG (1999) Macromolecules 22:2789–2792Google Scholar
  5. 5.
    Langer R (1998) Nature 392(Supp.):5Google Scholar
  6. 6.
    Dror Y, Cohen Y, Yerushalmi-Rozen R (2006) J Polym Sci Part B Polym Phys 44:3265–3271CrossRefGoogle Scholar
  7. 7.
    Lostoco MR, Murphy CA, Cameron JA, Huang SJ (1998) Polym Degrad Stab 89:303–307CrossRefGoogle Scholar
  8. 8.
    Kyrikou I, Briassoulis D (2007) J Polym Environ 15(2):125–150CrossRefGoogle Scholar
  9. 9.
    Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA (1997) Food Hydrocolloids 11:393CrossRefGoogle Scholar
  10. 10.
    Idris OHM, Williams PA, Phillips GO (1998) Food Hydrocolloids 12:339CrossRefGoogle Scholar
  11. 11.
    Duvallet S, Fenyo JC, Vandevelde MC (1989) Polymer Bull 21(5):517–521Google Scholar
  12. 12.
    Weinbreck F, Tromp RH, de Kruif CG (2004) Biomacromolecules 5(4):1437–1445CrossRefGoogle Scholar
  13. 13.
    Garlotta D, Doane W, Shogren RL, Lawton JW, Willett JL (2003) J Appl Polym Sci 88:1775CrossRefGoogle Scholar
  14. 14.
    Finkenstadt VL, Liu L, Willett JL (2007) J Polym Environ 15(1):1–6CrossRefGoogle Scholar
  15. 15.
    Mahadevan R, Smith L (2007) J Polym Environ 15(2):75–80CrossRefGoogle Scholar
  16. 16.
    Osman ME, Williams PA, Menzies AR, Phillips GO (1993) J Agric Food Chem 41:71–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John M. Onyari
    • 1
  • Francis Mulaa
    • 2
  • Joshua Muia
    • 3
  • Paul Shiundu
    • 1
  1. 1.Department of ChemistryCollege of Biological and Physical Sciences, University of NairobiNairobiKenya
  2. 2.Department of BiochemistryCollege of Biological and Physical Sciences, University of NairobiNairobiKenya
  3. 3.Department of ChemistryWestern Michigan UniversityKalamazooUSA

Personalised recommendations