Advertisement

Journal of Polymers and the Environment

, Volume 16, Issue 2, pp 109–122 | Cite as

Performance and Environmental Impact of Biodegradable Films in Agriculture: A Field Study on Protected Cultivation

  • Anu Kapanen
  • Evelia SchettiniEmail author
  • Giuliano Vox
  • Merja Itävaara
Original Paper

Abstract

The performance, the degradability in soil and the environmental impact of biodegradable starch-based soil mulching and low tunnel films were assessed by means of field and laboratory tests. The lifetime of the biodegradable mulches was 9 months and of the biodegradable low-tunnel films 6 months. The radiometric properties of the biodegradable films influenced positively the microclimate: air temperature under the biodegradable low tunnel films was 2 °C higher than under the low density polyethylene films, resulting in an up to 20% higher yield of strawberries. At the end of the cultivation period, the biodegradable mulches were broken up and buried in the field soil together with the plant residues. One year after burial, less than 4% of the initial weight of the biodegradable film was found in the soil. According to ecotoxicity tests, the kinetic luminescent bacteria test with Vibrio fischeri and the Enchytraeus albidus ISO/CD 16387 reproduction potential, there was no evidence of ecotoxicity in the soil during the biodegradation process. Furthermore, there was no change in the diversity of ammonia-oxidizing bacteria in the soil determined on the basis of the appearance of amoA gene diversity in denaturing gradient gel electrophoresis.

Keywords

Starch based material Radiometric properties Biotest Microbial community Ammonia-oxidizing bacteria 

Notes

Acknowledgments

The work has been carried out under the project “Environmentally friendly mulching and Low tunnel cultivation- BIOPLASTICS” funded by the European Commission (EC RTD QLRT, Contract n° QLK5-CT-2000-00044). The responsibility for designing and carrying out this investigation was shared equally among the authors: the radiometric and microclimate aspects were studied by Schettini and Vox, and the soil ecotoxicity and microbial community aspects by Kapanen and Itävaara. Marjo Öster and Asta Pesonen at VTT are thanked for their skilful laboratory work in the ecotoxicological and molecular analyses, and Michele Cosmo at the Department PROGESA for his co-operation in the spectrophotometric measurements.

References

  1. 1.
    Jouët JP (2001) Plasticulture 120(2):108–126Google Scholar
  2. 2.
    Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) Biosyst Eng 88(2):131–143CrossRefGoogle Scholar
  3. 3.
    Briassoulis D (2005) Polym Degrad Stab 88(3):489–503CrossRefGoogle Scholar
  4. 4.
    Desriac P (1991) Plasticulture 89:9–16Google Scholar
  5. 5.
    Lemaire J (1993) Plasticulture 97:17–22Google Scholar
  6. 6.
    Scott G (1999) Polymers and the environment. RSC paperbacks, The Royal Society of ChemistryGoogle Scholar
  7. 7.
    Ren X (2003) J Cleaner Prod 11:27–40CrossRefGoogle Scholar
  8. 8.
    Briassoulis D (2004) J Polym Environ 12(2):65–81CrossRefGoogle Scholar
  9. 9.
    Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar
  10. 10.
    Chiellini E, Cinelli P, Corti A, Kenawy ER (2001) Polym Degrad Stab 73(3):549–555CrossRefGoogle Scholar
  11. 11.
    Doran JW (2002) Agr Ecosyst Environ 88:119–127CrossRefGoogle Scholar
  12. 12.
    Kaplan DL, Mayer JM, Ball D, McCassie J, Stenhouse S (1993) In: Ching C, Kaplan DL, Thomas EL (eds) Biodegradable polymers and packaging. Technomic Publishing Co., Lancaster, PAGoogle Scholar
  13. 13.
    Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Polym Degrad Stab 91(12):2819–2833CrossRefGoogle Scholar
  14. 14.
    Malinconico M, Immirzi B, Massenti S, La Mantia FP, Mormile P, Petti L (2002) J Mater Sci 37:4973–4978CrossRefGoogle Scholar
  15. 15.
    Scott G (2000) Polym Degrad Stab 68(1):1–7CrossRefGoogle Scholar
  16. 16.
    Tocchetto RS, Benson RS, Dever M (2002) J Polym Environ 9(2):57–62CrossRefGoogle Scholar
  17. 17.
    Briassoulis D (2004) Biosyst Eng 87(2):209–223CrossRefGoogle Scholar
  18. 18.
    Briassoulis D (2006) Polym Degrad Stab 91(6):1256–1272CrossRefGoogle Scholar
  19. 19.
    Briassoulis D (2006) J Polym Environ 14(3):289–307CrossRefGoogle Scholar
  20. 20.
    Briassoulis D (2007) Polym Degrad Stab 92(6):1115–1132CrossRefGoogle Scholar
  21. 21.
    Scarascia-Mugnozza G, Schettini E, Vox G (2004) Biosyst Eng 87(4):479–487CrossRefGoogle Scholar
  22. 22.
    Scarascia-Mugnozza G, Schettini E, Vox G, Malinconico M, Immirzi B, Pagliara S (2006) Polym Degrad Stab 91(11):2801–2808CrossRefGoogle Scholar
  23. 23.
    Papadakis G, Briassoulis D, Scarascia Mugnozza G, Vox G, Feuilloley P, Stoffers JA (2000) J Agr Eng Res 77(1):7–38CrossRefGoogle Scholar
  24. 24.
    Kapanen A, Venelampi O, Vikman M, Itävaara M (2003) In: KTBL (ed) Biodegradable materials and natural fibre composites in agriculture and horticulture, International symposium, Hanover, Germany, pp 107–111Google Scholar
  25. 25.
    Bécaert V, Deschênes L (2006) Rev Environ Contam Toxicol 188:127–148CrossRefGoogle Scholar
  26. 26.
    Norton JM, Javier J, Alzerreca JJ, Suwa Y, Klotz MG (2002) Arch Microbiol 177(2):139–149CrossRefGoogle Scholar
  27. 27.
    Nicolaisen MH, Ramsing NB (2002) J Microbiol Methods 50:189–203CrossRefGoogle Scholar
  28. 28.
    Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2001) Appl Environ Microbiol 67:3426–3433CrossRefGoogle Scholar
  29. 29.
    Rotthauwe JH, Witzel KP, Liesack W (1997) Appl Environ Microbiol 63:4704–4712Google Scholar
  30. 30.
    Italian Ministry of Agriculture (I.M.A.) (1999) Official methods for chemical analysis of the soil. Gazzetta Ufficiale n 248, 21/10/1999 (in Italian)Google Scholar
  31. 31.
    ISO 10390 (1994) Soil quality: determination of pH. International Organization for StandardizationGoogle Scholar
  32. 32.
    ISO 10693 (1995) Soil quality: determination of carbonate content—volumetric method. International Organization for StandardizationGoogle Scholar
  33. 33.
    ISO 11261 (1995) Soil quality: determination of total nitrogen—modified Kjeldahl method. International Organization for StandardizationGoogle Scholar
  34. 34.
    ISO 11263 (1994) Soil quality: determination of phosphorus—spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution. International Organization for StandardizationGoogle Scholar
  35. 35.
    Bastioli C (1998) Polym Degrad Stab 59(1–3):263–272CrossRefGoogle Scholar
  36. 36.
    Siegel R, Howell JR (1972) Thermal radiation heat transfer. McGraw-Hill, New YorkGoogle Scholar
  37. 37.
    Lappalainen J, Juvonen R, Vaajasaari K, Karp M (1999) Chemosphere 38:1069–1083CrossRefGoogle Scholar
  38. 38.
    ISO/CD 21338 (2006) Water quality-kinetic determination of the inhibitory effect of sediment and other solids and colour containing samples on the light emission of Vibrio fischeri (Kinetic luminescent bacteria test)Google Scholar
  39. 39.
    ISO/CD 16387 (1996) Soil quality—effects of pollutants on Enchytraeidae—determination of effects on reproduction and survival. International Organization for StandardizationGoogle Scholar
  40. 40.
    Stephen JR, Chang YJ, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DC, Macnaughton SJ (1999) Environ Microbiol 1(3):231–243CrossRefGoogle Scholar
  41. 41.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Appl Environ Microbiol 59:695–700Google Scholar
  42. 42.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Shogren RL (2000) J Sustain Agr 16(4):33–47CrossRefGoogle Scholar
  45. 45.
    Monteith JL, Unsworth M (1990) Principles of environmental physics. Arnold, LondonGoogle Scholar
  46. 46.
    EN 13655 (2003) Mulching thermoplastic films for use in agriculture and horticulture. CEN—European Committee for Standardization, BruxellesGoogle Scholar
  47. 47.
    Pearson S, Wheldon E, Hadley P (1995) J Agr Eng Res 62(1):61–70CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur and micronutrients, 2nd edn. John Wiley & Sons, p 430Google Scholar
  50. 50.
    Grima S, Bellon-Maurel V, Silvestre F, Feuilloley P (2002) J Polym Environ 9(1):39–48CrossRefGoogle Scholar
  51. 51.
    Jayasekara R, Harding I, Bowater I, Lonergan G (2005) J Polym Environ 13(3):231–251CrossRefGoogle Scholar
  52. 52.
    Zheng Y, Yanful EK, Bassi AS (2005) Rev Biotechnol 25:243–250CrossRefGoogle Scholar
  53. 53.
    Kyrikou I, Briassoulis D (2007) J Polym Environ 15(2):125–150CrossRefGoogle Scholar
  54. 54.
    Nishide H, Toyota K, Kimura M (1999) Soil Sci Plant Nutr 45(4):963–972Google Scholar
  55. 55.
    Schettini E, Vox G, De Lucia B (2007) Scientia Horticulturae 112(4):456–461CrossRefGoogle Scholar
  56. 56.
    Kim MN, Lee AR, Yoon JS, Chin IJ (2000) Eur Polym J 36:1677–1685CrossRefGoogle Scholar
  57. 57.
    Ohtake Y, Kobayashi T, Asabe H, Murakami N (1998) Polym Degrad Stabil 60(1):79–84CrossRefGoogle Scholar
  58. 58.
    Degli-Innocenti F, Bellia G, Tosin M, Kapanen A, Itävaara M (2001) Polym Degrad Stab 73(1):101–106CrossRefGoogle Scholar
  59. 59.
    ISO 11348 (1998) Water quality: determination of inhibitory effect of waster samples on the light emission of Vibrio fischeri (Luminescent bacteria test)Google Scholar
  60. 60.
    Brouwer H, Murphy T, McArdle L (1990) Environ Toxicol Chem 9:1353–1358CrossRefGoogle Scholar
  61. 61.
    Põllumaa L, Kahru A, Eisenträger A, Reiman R, Maloveryan A, Rätsep A (2000) ATLA 28:461–472Google Scholar
  62. 62.
    Tuominen J, Kylmä J, Kapanen A, Venelampi O, Itävaara M, Seppälä J (2002) Biomacromol 3:445–455CrossRefGoogle Scholar
  63. 63.
    Kapanen A, Itävaara M (2001) Ecotox Environ Safe 49:1–16CrossRefGoogle Scholar
  64. 64.
    Nakamura Y (1989) Pedobiologia 33(6):389–398Google Scholar
  65. 65.
    Springett JA, Gray RAJ, Bakker L (1996) Pedobiologia 40:461–466Google Scholar
  66. 66.
    Palojärvi A, Alakukku L, Martikainen E, Niemi M, Vanhala P, Jørgensen K, Esala M (2002) Maa- ja elintarviketalous 2:1–88 (in Finnish)Google Scholar
  67. 67.
    Phillips CJ, Harris D, Dollhopf SL, Gross KL, Prosser JI, Paul EA (2000) Appl Environ Microb 66:5410–5418CrossRefGoogle Scholar
  68. 68.
    Narayan R (2001) Bioprocess Solid Waste Sludge 1(1):1–7. http://www.orbit-online.net/journal/

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anu Kapanen
    • 1
  • Evelia Schettini
    • 2
    Email author
  • Giuliano Vox
    • 2
  • Merja Itävaara
    • 1
  1. 1.VTT Technical Research Centre of FinlandVTT-EspooFinland
  2. 2.Department of Engineering and Management of the Agricultural, Livestock and Forest Systems (PROGESA)University of BariBariItaly

Personalised recommendations