Journal of Polymers and the Environment

, Volume 15, Issue 3, pp 159–168 | Cite as

Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers

  • Rosario VidalEmail author
  • Pilar Martínez
  • Elena Mulet
  • Rosa González
  • Belinda López-Mesa
  • Paul Fowler
  • J. M. Fang
Original Paper


Multilayer films exhibit excellent properties for food packaging. However, existing products are not biodegradable. Conventional plastics, manufactured from fossil fuels, not only consume non-renewable and finite resources, but also impact heavily on waste disposal. For this reason, a new multilayer film has been developed in the Multibio Project for the production of food packaging. In this paper, the environmental impacts of the new biodegradable multilayer film—based on modified starch and polylactic acid (PLA)—and those of the conventional multilayer film—based on PP and PA6—are quantified in the categories of climate change, fossil fuel depletion, acidification and eutrophication. Conventional multilayer film has a 90% higher impact than the Multibio multilayer film. The main difference between the LCA presented and the cited literature is the inventory data obtained in the phase of polymer processing to obtain multilayer film, and the assessment of the disposal phase of the multilayer film wastes.


Multilayer film Biodegradable Carbohydrate polymer LCA PLA Starch 



This work has been developed as a part of the CRAFT PROJECT Fifth Framework. Programme: QLK5-CT-2002–71148.


  1. 1.
    PlasticsEurope (2004) Assessing the eco-efficiency of plastics packaging waste recovery. PlasticsEuropeGoogle Scholar
  2. 2.
    Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Polym Degrad Stab 80:403CrossRefGoogle Scholar
  3. 3.
    James K, Grant T (2005) LCA of degradable plastic bags. Centre for Design at RMIT UniversityGoogle Scholar
  4. 4.
    Bohlmann GM (2004) Environ Prog 23(4):342CrossRefGoogle Scholar
  5. 5.
    Gärtner SO, Müller-Sämann K, Reinhardt GA, Vetter R (2002) Corn to plastics: a comprehensive environmental assessment. Institute for Energy and Environmental Research (Heidelberg), Institute for Land Management Compatible to Environmental RequirementsGoogle Scholar
  6. 6.
    Fang JM, Fowler PA, Escrig C, Gonzalez R, Costa JA, Chamudis L (2005) Carbohydr Polym 60:39–42CrossRefGoogle Scholar
  7. 7.
    Dinkel F, Pohl C, Ros M, Waldeck B (1996) Ökobilanz stärkehaltiger Kunststoffe. Bundesamt für Umwelt, Wald end Landschaft (BUWAL)Google Scholar
  8. 8.
    Müller-Sämann KM, Reinhardt G, Vetter R, Gärtner S (2003) Nachwachsende Rohstoffe in Baden-Württemberg: Identifizierung vorteilhafter Produktlinien zur stofflichen Nutzung unter besonderer Berücksichtigung unweltgerechter Anbauverfahren. Projektabschluss-bericht Forschungszentrum Karlruhe/IfUL MüllheimGoogle Scholar
  9. 9.
    Nielsen P, Nielsen A, Weidema B, Dalgaard R, Halberg N (2003) LCA food data base. Danish Institute of Agricultural SciencesGoogle Scholar
  10. 10.
    Patel M (2004) J Ind Ecol 7:3Google Scholar
  11. 11.
    Dall’Acqua S, Fawer M, Fritschi R, Allenspach C (1999) Life cycle inventories for the production of detergents ingredients. EMPAGoogle Scholar
  12. 12.
    Gärtner SO, Reinhardt GA (2003) Life cycle assessment of biodiesel: update and new aspects. IFEU-Institute for Energy and Environmental Research, Heidelberg GmbHGoogle Scholar
  13. 13.
    Esterman R, Schwarzwälder B (1998) Life cycle assessment of Mater-Bi bags for the collection of compostable waste. COMPOSTO for NovamontGoogle Scholar
  14. 14.
    ETH (1994) Okoinventare fur EnergiesystemeGoogle Scholar
  15. 15.
    Schwarzwälder B, Estermann R, Marini L (2000) In: Braunegg G (ed) Biorelated polymers: sustainable polymer science and technology. Plenum Pub Corp Published, p 371Google Scholar
  16. 16.
    Braschkat J, Gärtner SO, Reinhardt GA (2003) In: Ranalli P (ed) Agroindustria. Bologna, p 53Google Scholar
  17. 17.
    Patel DM, Bastioli DC, Marini DL, Würd-inger D-GE (2003) In: Biopolymers. Wiley-VCHGoogle Scholar
  18. 18.
    ExcelPlas, RMIT CfDa, NOLAN-ITU (2003) The impacts of degradable plastic bags in Australia. Final report to Department of the Environment and HeritageGoogle Scholar
  19. 19.
    Kim S, Dale BE (2004) J Ind Ecol 7:147CrossRefGoogle Scholar
  20. 20.
    Goedkoop M (1995) The eco-indicator 95, Final report. PRé ConsultantsGoogle Scholar
  21. 21.
    Guinée JB (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, DordrechtGoogle Scholar
  22. 22.
    Oers L, Koning A, Guinée JB, Huppes G (2002) Abiotic resource depletion in LCA. Improving characterisation factors for abiotic resource depletion as recommended in the new Dutch LCA handbook. Road and Hydraulic Engineering InstituteGoogle Scholar
  23. 23.
    Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJvd, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University PressGoogle Scholar
  24. 24.
    Huijbregts M (1999) Life cycle impact assessment of acidifying and eutrophying air pollutants. Calculation of equivalency factors with RAINS-LCA. Interfaculty Department of Environmental Science. University of Amsterdam, AmsterdamGoogle Scholar
  25. 25.
    Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Haes HAUd, Sleeswijk AW, Ansems AMM, Eggels PG, Duin Rv, Goede HPd (1992) Environmental life cycle assessment of products: guide. CML, LeidenGoogle Scholar
  26. 26.
    Smith A, Brown K, Olgivie S, Rushtone K, Bates J (2001) Waste management options and climate change. AEA Technology, Culham AbingdonGoogle Scholar
  27. 27.
    Felipo M (1996) In: de Bartoldi M et al (eds) The science of composting: Blackie Academic & ProfessionalGoogle Scholar
  28. 28.
    SIMAPRO (ed) (2002) Pré ConsultantsGoogle Scholar
  29. 29.
    Bousted I (2005) Eco-profiles of the European plastics industry. PlasticsEuropeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rosario Vidal
    • 1
    Email author
  • Pilar Martínez
    • 2
  • Elena Mulet
    • 1
  • Rosa González
    • 2
  • Belinda López-Mesa
    • 1
  • Paul Fowler
    • 3
  • J. M. Fang
    • 3
  1. 1.Engineering Design Group, GID, Department of Mechanical Engineering and ConstructionUniversitat Jaume ICastellonSpain
  2. 2.AIMPLAS, Valencia Parque TecnológicoPaternaSpain
  3. 3.The BioComposites CentreUniversity of WalesBangor, GwyneddUK

Personalised recommendations