Journal of Polymers and the Environment

, Volume 15, Issue 1, pp 51–56 | Cite as

Effect of Recycling on Material Properties of Glass-filled Polyethylene Terephthalate

  • H. Cornier-Ríos
  • P. A. Sundaram
  • J. T. Celorie
Original Paper

Abstract

Recycled plastics are considered low performance materials because their properties are expected to decrease drastically with recycling. The objective of this study was to characterize a 15 wt.% glass filled polyethylene terephthalate (rPET-15GF) using six recycle generations and four recycle ratios. Mechanical properties such as tensile strength, elastic modulus, and percent elongation to failure of the PET composite were determined for various recycle generations and recycle ratios. Results show that the mechanical properties of rPET-15GF decrease slightly per recycle generation. In contrast, thermal properties of rPET-15GF were not at all affected by the recycling process. This data demonstrates that recycled glass filled PET can be used effectively to fabricate components without significantly affecting their mechanical performance.

Keywords

Glass filled PET Recycling Mechanical properties Thermal properties 

Notes

Acknowledgment

The authors are grateful to Professor Pablo Caceres, Department of Mechanical Engineering, University of Puerto Rico at Mayagüez for obtaining the FESEM images.

References

  1. 1.
    Kilbert CJ, Walter DL (1992) Construct Building Mater 6:67CrossRefGoogle Scholar
  2. 2.
    Ambrose CA, Hooper R, Potter AKN, Singh MM (2002) Resources Conserv Recycl 36:309CrossRefGoogle Scholar
  3. 3.
    Fortelny I, Michalkova D, Krulis Z (2004) Polym Degrad Stab 85:974CrossRefGoogle Scholar
  4. 4.
    Bertin S, Robin J-J (2002) Eur Polym J 38:2255CrossRefGoogle Scholar
  5. 5.
    Cavalieri F, Padella F (2002) Waste Manage 22:913CrossRefGoogle Scholar
  6. 6.
    Edge M, Hayes M, Mohammadian M, Jones K (1991) Polym Degrad Stab 32:131CrossRefGoogle Scholar
  7. 7.
    Allen NS, Edge M, Mohammadian M, Jones K (1991) Eur Polym J 27:1373CrossRefGoogle Scholar
  8. 8.
    Loultcheva MK, Proietto M, Jilov N, La Mantia FP (1997) Polym Degrad Stab 57:77CrossRefGoogle Scholar
  9. 9.
    Paci M, La Mantia FP (1998) Polym Degrad Stab 61:417CrossRefGoogle Scholar
  10. 10.
    Frounchi M (1999) Macromol Symp 144:465Google Scholar
  11. 11.
    Torres N, Robin JJ, Boutevin B (2000) Eur Polym J 36:2075CrossRefGoogle Scholar
  12. 12.
    Abulsa IA, Jaynes CB, OGara JF (1996) J Appl Polym Sci 59:1957CrossRefGoogle Scholar
  13. 13.
    Cantwell WJ (1991) J Reinf Plast Composites 18:373Google Scholar
  14. 14.
    Bastioli C, Guanella I, Romano G (1990) Polym Composites 11:1CrossRefGoogle Scholar
  15. 15.
    Pegoretti A, Penati A (2004) Polymer 45:7995CrossRefGoogle Scholar
  16. 16.
    Kukaleva N, Simon G, Kosior E (2004) Polym Eng Sci 43:431CrossRefGoogle Scholar
  17. 17.
    Lynch JK, Nosker TJ, Renfree RW, Krishnaswany P, Francini R (2001) SPE Proc. ANTEC, Dallas, TX, p 392Google Scholar
  18. 18.
    Yilmazer U, Cansever M (2001) SPE Proc. ANTEC, Dallas, TX, pp 234–238Google Scholar
  19. 19.
    Yu ZZ, Yang MS, Dai SC, Mai YW (2004) J Appl Polym Sci 93:1462CrossRefGoogle Scholar
  20. 20.
    Pegoretti A, Kolarik J, Peroni C, Migliaresi C (2004) Polymer 45:2759Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. Cornier-Ríos
    • 1
  • P. A. Sundaram
    • 2
  • J. T. Celorie
    • 3
  1. 1.Inkjet Supplies Business, Hewlett-PackardAguadillaUSA
  2. 2.Department of Mechanical EngineeringUniversity of Puerto RicoMayagüezUSA
  3. 3.Inkjet Supplies Business, Hewlett-PackardCorvallisUSA

Personalised recommendations