Journal of Polymers and the Environment

, Volume 14, Issue 4, pp 369–374 | Cite as

Synthesis of Short-chain-length/Medium-chain-length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisome of the Transgenic Arabidopsis Thaliana Harboring the PHA Synthase Gene from Pseudomonas sp. 61-3

  • Ken’ichiro Matsumoto
  • Yuko Arai
  • Rina Nagao
  • Takaaki Murata
  • Kazuma Takase
  • Hideo Nakashita
  • Seiichi Taguchi
  • Hiroaki Shimada
  • Yoshiharu Doi


In this paper, the photosynthetic production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers is reported. The wild-type and highly active doubly mutated PHA synthase 1 (S325T/Q481K, abbreviated ST/QK) genes from Pseudomonas sp. 61-3 were introduced into Arabidopsis thaliana. Peroxisome targeting signal 1 (PTS1) was used to target PHA synthases into the peroxisome to synthesize PHA from the intermediates of the β-oxidation pathway. The transgenic Arabidopsis produced PHA copolymers consisting of 40–57 mol% 3-hydroxybutyrate, 21–49 mol% 3-hydroxyvalerate, 8–18 mol% 3-hydroxyhexanoate, and 2–8 mol% 3-hydroxyoctanoate. The maximum PHA contents were 220μ g/g cell dry weight (cdw) in leaves, and 36μ g/g cdw in stems, respectively. The expression of the ST/QK mutated PHA synthase in leaves gene did not lead to significant difference in PHA content and monomer composition of PHAs, compared to the wild-type PHA synthase gene, suggesting that the supply of monomers may be a rate-determining step of PHA biosynthesis in the peroxisome. However, in stems, there were significant differences dependent on whether the wild-type or ST/QK mutated PHA synthase was expressed. These results suggest that tissue-specific monomer availability is important in determining the final mol% composition of PHA copolymers produced by the peroxisome in plants.


Polyhydroxyalkanoate Arabidopsis thaliana Peroxisome Pseudomonas sp. 61-3 3-hydroxyvalerate 



We thank Ms. Hiromi Masaki for supporting plant manipulations, Dr. Christopher Nomura for valuable discussions and RIKEN Research Resources Center (RRC) for DNA sequence analysis. This work was partly supported by Grant-in-aid for Scientific Research of Japan (Grant No. 16710059 to K.M.), Special Postdoctoral Research Program of RIKEN Institute (to K.M. and K.T.), Solution Oriented Research for Science, Technology (SORST) of the Japan Science and Technology Corporation (JST), Hokkaido Foundation for the Promotion of Scientific and Industrial Technology, and Industrial Technology Research Grant Program in 2003 from the New Energy and Industrial Technology Development Organization (NEDO).


  1. 1.
    Doi Y (1990) Microbial polyesters. VHC Publishers, New YorkGoogle Scholar
  2. 2.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21Google Scholar
  3. 3.
    de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) J Bacteriol 154:870Google Scholar
  4. 4.
    Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822CrossRefGoogle Scholar
  5. 5.
    Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Macromolecules 27:878CrossRefGoogle Scholar
  6. 6.
    Matsusaki H, Abe H, Doi Y (2000) Biomacromolecules 1:17CrossRefGoogle Scholar
  7. 7.
    Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y (1998) J Bacteriol 180:6459Google Scholar
  8. 8.
    Matsumoto K, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y (2001) Biomacromolecules 2:934CrossRefGoogle Scholar
  9. 9.
    Arnold FH, (1998) Acc Chem Res 31:125CrossRefGoogle Scholar
  10. 10.
    Taguchi S, Doi Y (2004) Macromol Biosci 4:145CrossRefGoogle Scholar
  11. 11.
    Taguchi S, Ozaki A, Momose H (1998) Appl Environ Microbiol 64:492Google Scholar
  12. 12.
    Takase K, Matsumoto K, Taguchi S, Doi Y (2004) Biomacromolecules 5:480CrossRefGoogle Scholar
  13. 13.
    Takase K, Taguchi S, Doi Y (2003) J Biochem 133:139CrossRefGoogle Scholar
  14. 14.
    Matsumoto K, Takase K, Aoki E, Doi Y, Taguchi S (2005) Biomacromolecules 6:99CrossRefGoogle Scholar
  15. 15.
    Matsumoto K, Nagao R, Murata T, Arai Y, Kichise T, Nakashita H, Taguchi S, Shimada H, Doi Y (2005) Biomacromolecules 6:2126CrossRefGoogle Scholar
  16. 16.
    Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Planta 211:841CrossRefGoogle Scholar
  17. 17.
    Nawrath C, Poirier Y, Somerville C (1994) Proc Natl Acad Sci 91:12760CrossRefGoogle Scholar
  18. 18.
    Poirier Y, Dennis D, Klomparens K, Somerville C (1992) Science 256:520CrossRefGoogle Scholar
  19. 19.
    Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, SR Padgette, Kishore G, Gruys KJ, (1999) Nat Biotechnol 17:1011CrossRefGoogle Scholar
  20. 20.
    Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Planta 209:547CrossRefGoogle Scholar
  21. 21.
    Mott IEC, Hughes A, Dunnill P (2000) Bioprocess Engi 22:451CrossRefGoogle Scholar
  22. 22.
    Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Biosci Biotechnol Biochem 63:870CrossRefGoogle Scholar
  23. 23.
    Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Biosci Biotechnol Biochem 65:1688CrossRefGoogle Scholar
  24. 24.
    Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Plant Cell Physiol 45:1176CrossRefGoogle Scholar
  25. 25.
    Lossl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Plant Cell Rep 21:891Google Scholar
  26. 26.
    Arai Y, Nakashita H, Doi Y, Yamaguchi I (2005) Plant Biotechnol 18:289Google Scholar
  27. 27.
    Hahn JJ, Eschenlauer AC, Sleytr UB, Somers DA, Srienc F (1999) Biotechnol Prog 15:1053CrossRefGoogle Scholar
  28. 28.
    Zhong H, Teymouri F, Chapman B, Maqbool SB, Sabzikar R, El Maghraby Y, Dale B, Sticklen MB (2003) Plant Science 165:455CrossRefGoogle Scholar
  29. 29.
    Saruul P, Srienc F, Somers DA, Samac DA (2002) Crop Science 42:919CrossRefGoogle Scholar
  30. 30.
    Menzel G, Harloff HJ, Jung C (2003) Appl Microbiol Biotechnol 60:571Google Scholar
  31. 31.
    Mittendorf V, Bongcam V, Allenbach L, Coullerez G, Martini N, Poirier Y (1999) Plant J 20:45CrossRefGoogle Scholar
  32. 32.
    Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbüchel A, Poirier Y (1998) Proc Natl Acad Sci 95:13397CrossRefGoogle Scholar
  33. 33.
    Moire L, Rezzonico E, Goepfert S, Poirier Y (2004) Plant Physiol 134:432CrossRefGoogle Scholar
  34. 34.
    Poirier Y, Ventre G, Caldelari D (1999) Plant Physiol 121:1359CrossRefGoogle Scholar
  35. 35.
    Nishimura M, Hayashi M, Kato A, Yamaguchi K, Mano S (1996) Cell Struct Funct 21:387CrossRefGoogle Scholar
  36. 36.
    Hooks MA, Kellas F, Graham IA (1999) Plant J 20:1CrossRefGoogle Scholar
  37. 37.
    Froman BE, Edwards PC, Bursch AG, Dehesh K (2000) Plant Physiol 123:733CrossRefGoogle Scholar
  38. 38.
    Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura R (1999) J Biol Chem 274:12715CrossRefGoogle Scholar
  39. 39.
    Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001) Plant J 28:1CrossRefGoogle Scholar
  40. 40.
    Arai Y, Nakashita H, Suzuki Y, Kobayashi Y, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2002) Plant Cell Physiol 43:555CrossRefGoogle Scholar
  41. 41.
    Clough SJ, Bent AF (1998) Plant J 16:735CrossRefGoogle Scholar
  42. 42.
    Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) J Biol Chem 278:21370CrossRefGoogle Scholar
  43. 43.
    Slater S, Gallaher T, Dennis D (1992) Appl Environ Microbiol 58:1089Google Scholar
  44. 44.
    Lageveen RG, Muisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl Environ Microbiol 54:2924Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ken’ichiro Matsumoto
    • 1
    • 2
  • Yuko Arai
    • 2
    • 3
  • Rina Nagao
    • 1
  • Takaaki Murata
    • 1
  • Kazuma Takase
    • 2
  • Hideo Nakashita
    • 2
  • Seiichi Taguchi
    • 4
  • Hiroaki Shimada
    • 1
    • 5
  • Yoshiharu Doi
    • 2
  1. 1.Department of Biological Science and TechnologyTokyo University of ScienceNoda, ChibaJapan
  2. 2.Polymer Chemistry LaboratoryRIKEN InstituteSaitamaJapan
  3. 3.National Institute for Basic BiologyOkazakiJapan
  4. 4.Division of Molecular Chemistry, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  5. 5.Division of Plant Biotechnology, Tissue Engineering Research CenterTokyo University of ScienceTokyoJapan

Personalised recommendations