Advertisement

Journal of Polymers and the Environment

, Volume 14, Issue 3, pp 239–248 | Cite as

Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation

  • Hideto TsujiEmail author
  • Yoshihisa Echizen
  • Yoshiro Nishimura
Original Paper

Abstract

Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.

Keywords

Poly(l-lactic acid) Poly(l-lactide) Enzymatic degradation UV irradiation Biodegradable polyesters 

Notes

Acknowledgments

The authors thank Ms. Mikiko Fujita, Textile Research Center, Aichi Industrial Technology Institute (AITEC) for the irradiation experiments. This research was supported by a Grant-in-Aid for Scientific Research on Priority Area, “Sustainable Biodegradable Plastics”, No. 11217209, and The 21st Century Centers of Excellence (COE) Program, “Ecological Engineering for Homeostatic Human Activities”, from the Ministry of Education, Culture, Sports, Science and Technology (Japan).

References

  1. 1.
    Kharas GB, Sanchez-Riera F, Severson DK (1994) In: Mobley DP (ed) Plastics from microbes. Hanser Publishers, New York, pp 93–137Google Scholar
  2. 2.
    Doi Y, Fukuda K (eds) (1994) Biodegradable plastics and polymers (Studies in Polymer Science 12). Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Coombes AGA, Meikle MC (1994) Clin Mater 17:35CrossRefGoogle Scholar
  4. 4.
    Vert M, Schwarch G, Coudane J (1995) J Macromol Sci, Pure Appl Chem A32:787Google Scholar
  5. 5.
    Hartmann MH (1998) In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, Germany, pp 367–411Google Scholar
  6. 6.
    Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117CrossRefGoogle Scholar
  7. 7.
    Albertsson A-C (ed) (2002) Degradable aliphatic polyesters (Advances in polymer science, vol 157). Springer, Berlin, GermanyGoogle Scholar
  8. 8.
    Södergård A, Stolt M (2002) Prog Polym Sci 27:1123CrossRefGoogle Scholar
  9. 9.
    Scott G (ed) (2002) Biodegradable polymers. Principles and applications, 2nd edn. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  10. 10.
    Tsuji H (2002) In: Doi Y, Steinbüchel A (eds) Polyesters III (Biopolymers, vol 4). Wiley-VCH, Weinheim, Germany, pp 129–177Google Scholar
  11. 11.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835CrossRefGoogle Scholar
  12. 12.
    Tsuji H, Daimon H, Fujie K (2003) Biomacromolecules 4:835CrossRefGoogle Scholar
  13. 13.
    Noda M, Okuyama H (1999) Chem Pharm Bull 47:467Google Scholar
  14. 14.
    Fan Y, Nishida H, Mori T, Shirai Y, Endo T (2004) Polymer 45:1197CrossRefGoogle Scholar
  15. 15.
    Ikada E (1997) J Photopolym Sci Technol 10:265Google Scholar
  16. 16.
    Ikada E (1998) J Photopolym Sci Technol 11:23Google Scholar
  17. 17.
    Ikada E (1999) J Photopolym Sci Technol 12:251Google Scholar
  18. 18.
    Ikada E (1999) J Environ Polym Degrad 7:197CrossRefGoogle Scholar
  19. 19.
    Ho K-LG, Pometto AL III (1999) J Polym Environ 7:93CrossRefGoogle Scholar
  20. 20.
    Sakai W, Sadakane T, Nishimoto W, Nagata M, Tsutsumi N (2002) Polymer 43:6231CrossRefGoogle Scholar
  21. 21.
    Copinet A, Bertrand C, Longieras A, Coma V, Couturier Y (2003) J Polym Environ 11:169CrossRefGoogle Scholar
  22. 22.
    Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y (2004) Chemosphere 55:763CrossRefGoogle Scholar
  23. 23.
    Williams DF (1981) Eng Med 10:5Google Scholar
  24. 24.
    Cai H, Dave V, Gross RA, McCarthy SP (1996) J Polym Sci: Part B: Polym Phys 34:2701CrossRefGoogle Scholar
  25. 25.
    Reeve MS, McCarthy SP, Downey MJ, Gross RA (1994) Macromolecules 27:825CrossRefGoogle Scholar
  26. 26.
    MacDonald RT, McCarthy SP, Gross RA (1996) Macromolecules 29:7356CrossRefGoogle Scholar
  27. 27.
    Li S, McCarthy SP (1999) Macromolecules 32:4454CrossRefGoogle Scholar
  28. 28.
    Li S, Tenon M, Garreau H, Braud C, Vert M (2000) Polym Degrad Stab 67:85CrossRefGoogle Scholar
  29. 29.
    Tsuji H, Miyauchi S (2001) Polym Degrad Stab 71:415CrossRefGoogle Scholar
  30. 30.
    Tsuji H, Miyauchi S (2001) Polymer 42:4463CrossRefGoogle Scholar
  31. 31.
    Tsuji H, Miyauchi S (2001) Biomacromolecules 2:597CrossRefGoogle Scholar
  32. 32.
    Shirahama H, Mizuma K, Umemoto K, Yasuda H (2001) J Polym Sci: Part A: Polym Chem 39:1374CrossRefGoogle Scholar
  33. 33.
    Shirahama H, Tanaka A, Yasuda H (2002) J Polym Sci: Part A: Polym Chem 40:302CrossRefGoogle Scholar
  34. 34.
    Tsutsumi C, Shirahama H, Yasuda H (2002) Macromol Biosci 2:223CrossRefGoogle Scholar
  35. 35.
    Tsutsumi C, Nakagawa K, Shirahama H, Yasuda H (2003) Polym Int 52:439CrossRefGoogle Scholar
  36. 36.
    Watanabe Y, Shirahama H, Yasuda H (2004) React Funct Polym 59:211CrossRefGoogle Scholar
  37. 37.
    Teramoto Y, Nishio Y (2004) Biomacromolecules 5:407CrossRefGoogle Scholar
  38. 38.
    Tsuji H, Tezuka Y (2005) Macromol Biosci 5:135CrossRefGoogle Scholar
  39. 39.
    Tsuji H, Tezuka Y, Yamada K (2005) J Polym Sci: Part B: Polym Phys 49:1064CrossRefGoogle Scholar
  40. 40.
    Sheth M, Ananda Kumar R, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1495CrossRefGoogle Scholar
  41. 41.
    Nagata M, Okano F, Sakai W, Tsutsumi N (1998) J Polym Sci: Part A: Polym Chem 36:1861CrossRefGoogle Scholar
  42. 42.
    Tsuji H, Muramatsu H (2001) Polym Degrad Stab 71:403CrossRefGoogle Scholar
  43. 43.
    Gajria AM, Dave V, Gross RA, McCarthy SP (1996) Polymer 37:437CrossRefGoogle Scholar
  44. 44.
    Gan Z, Yu D, Zhong Z, Liang Q, Jing X (1999) Polymer 40:2859CrossRefGoogle Scholar
  45. 45.
    Liu L, Li S, Garreau H, Vert M (2000) Biomacromolecules 1:350CrossRefGoogle Scholar
  46. 46.
    Tsuji H, Ishizaka T (2001) Macromol Biosci 1:59CrossRefGoogle Scholar
  47. 47.
    Fukuda N, Tsuji H, Ohnishi Y (2002) Polym Degrad Stab 78:119CrossRefGoogle Scholar
  48. 48.
    Fukuda N, Tsuji H (2005) J Appl Polym Sci 96:190CrossRefGoogle Scholar
  49. 49.
    Tsuji H, Ishida T, Fukuda N (2003) Polym Int 52:843CrossRefGoogle Scholar
  50. 50.
    Tsuji H, Ishida T (2003) Macromol Biosci 3:51CrossRefGoogle Scholar
  51. 51.
    Tsuji H, Echizen Y, Nishimura Y (2006) Polym Degrad Stab 91:1128CrossRefGoogle Scholar
  52. 52.
    Tsuji H, Echizen Y, Saha SK, Nishimura Y (2005) Macromol Mater Eng 290:1192CrossRefGoogle Scholar
  53. 53.
    Miyata T, Masuko T (1998) Polymer 39:5515CrossRefGoogle Scholar
  54. 54.
    Tsuji H, Ikarashi K, Fukuda N (2004) Polym Degrad Stab 84:515CrossRefGoogle Scholar
  55. 55.
    Tsuji H, Ikarashi K (2004) Polym Degrad Stab 85:647CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hideto Tsuji
    • 1
    Email author
  • Yoshihisa Echizen
    • 1
  • Yoshiro Nishimura
    • 2
  1. 1.Faculty of Engineering, Department of Ecological EngineeringToyohashi University of TechnologyTempaku-cho, ToyohashiJapan
  2. 2.Mikawa Textile Research Center, Aichi Industrial Technology Institute (AITEC)Aichi Prefectural GovernmentOtsuka-cho, GamagoriJapan

Personalised recommendations