Journal of Polymers and the Environment

, Volume 14, Issue 1, pp 9–13 | Cite as

Emission of Volatiles from Polymers — A New Approach for Understanding Polymer Degradation

  • Ann-Christine AlbertssonEmail author
  • Mikael Gröning
  • Minna Hakkarainen


Emission of low molar mass compounds from different polymeric materials was determined and the results from the volatile analysis were applied to predict the degree of degradation and long-term properties, to determine degradation rates and mechanisms, to differentiate between biotic and abiotic degradation and for quality control work. Solid-phase microextraction and solid-phase extraction together with GC-MS were applied to identify and quantify the low molar mass compounds. Volatiles were released and monitored at early stages of degradation before any matrix changes were observed by e.g. SEC, DSC and tensile testing. The analysis of volatiles can thus also be applied to detect small differences between polymeric materials and their susceptibility to degradation. The formation of certain degradation products correlated with the changes taking place in the polymer matrix, these indicator products could, thus, be analysed to rapidly predict the degree of degradation in the polymer matrix and further to predict the long-term properties and remaining lifetime of the product.


Emission of volatiles polymer chromatography lifetime prediction degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hakkarainen, M., Albertsson, A.-C., Karlsson, S. 1997J. Appl. Polym. Sci66959967CrossRefGoogle Scholar
  2. 2.
    Hakkarainen, M., Albertsson, A.-C., Karlsson, S. 1997J. Environ. Polym. Degrad56773Google Scholar
  3. 3.
    Karlsson, S., Hakkarainen, M., Albertsson, A.-C. 1997Macromolecules3077217728CrossRefGoogle Scholar
  4. 4.
    Hakkarainen, M., Albertsson, A.-C. 2005Biomacromolecules6775779CrossRefGoogle Scholar
  5. 5.
    Gröning, M., Hakkarainen, M. 2002J. Appl. Polym. Sci8633963407CrossRefGoogle Scholar
  6. 6.
    Lindström, A., Albertsson, A.-C., Hakkarainen, M. 2004J. Chromatogr. A1022171177Google Scholar
  7. 7.
    Lindström, A., Albertsson, A.-C., Hakkarainen, M. 2004Polym. Degrad. Stab83487493Google Scholar
  8. 8.
    Albertsson, A.-C., Barenstedt, C., Karlsson, S., Lindberg, T. 1995Polymer3630753083Google Scholar
  9. 9.
    Albertsson, A.-C., Erlandsson, B., Hakkarainen, M., Karlsson, S. 1998J. Environ. Polym. Degrad6187195Google Scholar
  10. 10.
    Hakkarainen, M., Albertsson, A.-C. 2004Adv. Polym. Sci169177199Google Scholar
  11. 11.
    Hakkarainen, M., Karlsson, S., Albertsson, A.-C. 1999Polymer4123312338Google Scholar
  12. 12.
    Hakkarainen, M., Albertsson, A.-C. 2002Macromol. Chem. Phys20313571363CrossRefGoogle Scholar
  13. 13.
    Hakkarainen, M., Karlsson, S., Albertsson, A.-C. 2000J. Appl. Polym. Sci76228239CrossRefGoogle Scholar
  14. 14.
    Eldsäter, C., Albertsson, A.-C., Karlsson, S. 1997Acta Polym48478483CrossRefGoogle Scholar
  15. 15.
    Hakkarainen, M., Gröning, M., Albertsson, A.-C. 2003J. Appl. Polym. Sci89867873CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ann-Christine Albertsson
    • 1
    Email author
  • Mikael Gröning
    • 1
  • Minna Hakkarainen
    • 1
  1. 1.Department of Fibre and Polymer TechnologyRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations