Journal of Polymers and the Environment

, Volume 13, Issue 4, pp 301–306 | Cite as

Application of Cellulose Microfibrils in Polymer Nanocomposites

  • William J. Orts
  • Justin Shey
  • Syed H. Imam
  • Gregory M. Glenn
  • Mara E. Guttman
  • Jean-Francois Revol
Article

Abstract

Cellulose microfibrils obtained by the acid hydrolysis of cellulose fibers were added at low concentrations (2–10% w/w) to polymer gels and films as reinforcing agents. Significant changes in mechanical properties, especially maximum load and tensile strength, were obtained for fibrils derived from several cellulosic sources, including cotton, softwood, and bacterial cellulose. For extruded starch plastics, the addition of cotton-derived microfibrils at 10.3% (w/w) concentration increased Young’s modulus by 5-fold relative to a control sample with no cellulose reinforcement. Preliminary data suggests that shear alignment significantly improves tensile strength. Addition of microfibrils does not always change mechanical properties in a predictable direction. Whereas tensile strength and modulus were shown to increase during addition of microfibrils to an extruded starch thermoplastic and a cast latex film, these parameters decreased when microfibrils were added to a starch–pectin blend, implying that complex interactions are involved in the application of these reinforcing agents.

Cellulose crystallites microfibrils nanoparticles composites nanocomposites starch latex pectin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., Kamigaito, O. 1990Mat. Res. Symp. Proc.17145Google Scholar
  2. 2.
    Okada, A., Usuki, A. 1995Mat. Sci. Eng. C3109115CrossRefGoogle Scholar
  3. 3.
    B. Miller (1997) Plastics World 36–38Google Scholar
  4. 4.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O. 1993J. Poly. Sci. A, Poly. Chem.31983986Google Scholar
  5. 5.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito,  1993J. Poly. Sci. A, Poly. Chem.3117551758Google Scholar
  6. 6.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O., Kaji, K. 1994J. Poly. Sci. B, Poly. Phys.32625630Google Scholar
  7. 7.
    Lan, T., Kaviratna, P. D., Pinnavaia, T. 1994J. Chem. Mater.6573575CrossRefGoogle Scholar
  8. 8.
    Lan, T., Kaviratna, P. D., Pinnavaia, T. 1995J. Chem. Mater.721442150CrossRefGoogle Scholar
  9. 9.
    Laus, M., Francescangeli, O., Sandrolini, F. 1997J. Mater. Res.1231343139Google Scholar
  10. 10.
    Favier, V., Chanzy, H., Cavaille, J. Y. 1995Macromolecules2863656367CrossRefGoogle Scholar
  11. 11.
    Hajji, P., Cavaille, J. Y., Favier, V., Gauthier, C., Vigier, G. 1996Polym. Comp.17612CrossRefGoogle Scholar
  12. 12.
    Dubief, D., Samain, E., Dufresne, A. 1999Macromolecules3257655771CrossRefGoogle Scholar
  13. 13.
    Dufresne, A., Dupeyre, D., Vignon, M. R. 2000J. Appl. Polym. Sci.7620802092CrossRefGoogle Scholar
  14. 14.
    Angeles, M. N., Dufresne, A. 2000Macromolecules3383448353CrossRefGoogle Scholar
  15. 15.
    Angeles, M. N., Dufresne, A. 2001Macromolecules3429212931CrossRefGoogle Scholar
  16. 16.
    Cavaille, J. Y., Dufresne, A. 1998Greene, R. V.Imam, S. H. eds. Biopolymers: Utilizing Natures Advanced MaterialsACS PublishingNew YorkGoogle Scholar
  17. 17.
    Dufresne, A. 1998Recent Research Developments in Macromolecules Research3455474Google Scholar
  18. 18.
    Favier, V., Chanzy, H., Cavaille, J. Y. 1995Macromolecules2863656367CrossRefGoogle Scholar
  19. 19.
    Favier, V., Canova, G., Shrivastava, S., Cavaille, J. Y. 1997J. Polym. Eng. Sci.3717321739CrossRefGoogle Scholar
  20. 20.
    Morin, A., Dufresne, A. 2002Macromolecules3521902199CrossRefGoogle Scholar
  21. 21.
    Paillet, M., Dufresne, A. 2001Macromolecules3465276530CrossRefGoogle Scholar
  22. 22.
    Dufresne, A., Vignon, M. R. 1998Macromolecules3126932696CrossRefGoogle Scholar
  23. 23.
    Orts, W. J., Godbout, L., Marchessault, R. H., Revol, J.-F. 1998Macromolecules3157175725CrossRefGoogle Scholar
  24. 24.
    Grunert, M., Winter, W. 2000Polym. Mat. Sci. Eng.82232Google Scholar
  25. 25.
    Sakurada, I., Nukushina, Y., Ito, I. 1962J. Polym. Sci.57651CrossRefGoogle Scholar
  26. 26.
    Wainwright, S. A., Biggs, W. D., Currey, J. D., Gosline, J. M. 1982Mechanical Design in OrganismsPrinceton University PressPrincetonGoogle Scholar
  27. 27.
    Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H., Gray, D. G. 1992Int. J. Biol. Macromol.14170PubMedGoogle Scholar
  28. 28.
    J.-F. Revol, L. Godbout, and D. G. Gray (1995) US Patent 5,629,055Google Scholar
  29. 29.
    Revol, J.-F., Godbout, L., Dong, X. M., Gray, D. G., Chanzy, H., Maret, G. 1994Liq. Cryst.16127Google Scholar
  30. 30.
    Revol, J.-F., Marchessault, R. H. 1993Int. J. Biol. Macromol.15329CrossRefPubMedGoogle Scholar
  31. 31.
    Dufresne, A., Cavaille, J. Y., Helbert, W. 1997Polym. Compos.18198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • William J. Orts
    • 1
  • Justin Shey
    • 1
  • Syed H. Imam
    • 1
  • Gregory M. Glenn
    • 1
  • Mara E. Guttman
    • 1
  • Jean-Francois Revol
    • 2
  1. 1.USDA Western Regional Research CenterAlbanyUSA
  2. 2.PAPRICANPointe ClaireCanada

Personalised recommendations