Journal of Polymers and the Environment

, Volume 13, Issue 1, pp 39–45 | Cite as

Estimation on Biodegradability of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and Numbers of Aerobic PHB/V Degrading Microorganisms in Different Natural Environments

  • Shufang Wang
  • Cunjiang Song
  • Wataru Mizuno
  • Mitsuyo Sano
  • Maeda Maki
  • Chao Yang
  • Banghua Zhang
  • Shigeya Takeuchi
Article

Abstract

To assess the capacity of the natural environment for degrading PHB/V, the film-MPN method proposed previously was modified to estimate the numbers of PHB/V degrading microorganisms (degraders) in various environments. The First-Order Reaction (FOR) model was used to determine the appropriate incubation period for the method. Numbers of aerobic PHB/V degraders were estimated in garden soil, paddy field soil, farm soil, river bank soil, infertile garden soil, river water, activated sludge, and seawater by the film-MPN method. Results were compared with those estimated by the clear-zone technique and showed that the film-MPN method was suitable for estimating the numbers of PHB/V degraders in the environments tested. On the other hand, biodegradability of injection molded PHB/V samples was investigated in several kinds of environments. The changes of weight were studied and results showed that biodegradability of PHB/V related to the numbers of PHB/V degraders in similar ecosystem in different regions. In different environments the biodegradability of PHB/V not only related to the number of PHB/V degraders, but also depended on whether there were conditions for the PHB/V degraders to grow and proliferate easily in the environment.

Keywords

Biodegradation film-MPN method PHB/V degrader natural environment injection molded PHB/V sample 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lemoigne, M. 1926Bull Soc. Chim. Biol. (Paris)8770782Google Scholar
  2. Steinbüchel, A., Valentin, H. E. 1995FEMS Microbiol. Lett.128219228Google Scholar
  3. Chowdhury, A. 1963Arch. Mikrobiol.47167200Google Scholar
  4. Delafield, F. P., Doudoroff, M., Palleroni, N. J., Lusty, C. J., Contopoulos, R. 1965J. Bacteriol.9014551466Google Scholar
  5. Mergaert, J., Webb, A., Anderson, C., Wouters, A., Swings, J. 1993Appl. Environ. Microbiol.5932333238Google Scholar
  6. Schirmer, A., Jendrossek, D., Schlegel, H. G. 1993Appl. Environ. Microbiol.5912201227Google Scholar
  7. Brandl, H., Bachofen, R., Mayer, J., Wintermantel, E. 1995Can. J. Microbiol.41(Suppl 1)143153Google Scholar
  8. Jendrossek, D., Schirmer, A., Schlegel, H. G. 1996Appl. Microbiol. Biotechnol.46451463Google Scholar
  9. Hankermeyer, C. R., Tjeerdema, R. S. 1999Rev Environ. Contam. Toxicol.159124Google Scholar
  10. A. Steinbüchel (1996) in H. J. Rehm et al. (Eds), Biotechnology, Vol 6, VCH, Weinheim, pp. 405–451.Google Scholar
  11. Jendrossek, D., Knoke, I., Habibian, R. B., Steinbüchel, A., Schegel, H. G. 1993J. Environ. Polym. Degrad.15363Google Scholar
  12. Briese, B. H., Jendrossek, D., Schlegel, H. G. 1994FEMS Microbiol. Letter117107112Google Scholar
  13. J. Mergaert, A. Schirmer, L. Hauben, M. Mau, B. Hoste, K. Kersters, D. Jendrossek, and J. Swings (1996) Int. J. Syst. Bacteriol. July, 769-773. Google Scholar
  14. Matavulj, M., Molitoris, H. P. 1992FEMS Microbiol. Rev.103323332Google Scholar
  15. Nishida, H., Tokiwa, Y. 1993J Environ. Polym. Degrad.1227233Google Scholar
  16. Nishida, H., Suzuki, S., Tokiwa, Y. 1998J Environ. Polym. Degrad.64358Google Scholar
  17. Horowitz, D. M., Sanders, J. K. M. 1995Can. J. Microbiol. 41 (Suppl. 1)115123Google Scholar
  18. Ramsay, B. A., Saracovan, I., Ramsay, J. A., Marchessault, R. H. 1994J Environ. Polym. Degrad.217Google Scholar
  19. Marchessault, R. H., Morin, F. G., Wong, S., Saracovan, I. 1995Can. J. Microbiol.41 (Suppl.1)138142Google Scholar
  20. Schirmer, A., Matz, C., Jendrossek, D. 1995Can. J. Microbiol. 41 (Suppl. 1)170179Google Scholar
  21. Song, C. J., Uchida, U., Ono, S., Shimasaki, C., Inoue, M. 2001Biosci. Biotechnol. Biochem.6512141217Google Scholar
  22. Song, C. J., Wang, S. F., Ono, S., Zhang, B. H., Shimasaki, C., Inoue, M. 2002Soil Sci. Plant Nutr.48159164Google Scholar
  23. Song, C. J., Wang, S. F., Ono, S., Zhang, B. H., Shimasaki, C., Inoue, M. 2003Polym. Adv. Technol.14184188Google Scholar
  24. Mizuno, W., Kawaguchi, M., Sarukura, N., Omodaka, I., Takeguchi, S. 1996KOBUNSHI RONBUNSHU53513521Google Scholar
  25. Mizuno, W., Maeda, Y., Kozima, K., Takamichi, T., Miyabe, K., Takeguchi, S. 2001KOBUNSHI RONBUNSHU585965Google Scholar
  26. The Committee of Standard Method of Soil for Analysis and Measurement (1986) in Japan Society for Soil and Fertilizer Science (Eds), The Standard Method of Soil for Analysis and Measurement, HAKUTOMOSHYA, Japan, 70-175. Google Scholar
  27. Caballero, K. P., Karel, S. F., Register, R. A. 1995Int. J. Biol. Macromol.178692Google Scholar
  28. Ishikuri, S. 1992Japan Society for Soil Microbiology (Eds) New Compilation Soil Microbiology Experimental MethodYOKENDOTokyo4554Google Scholar
  29. Hattori, T. 1985Rep Inst. Agric. Res. Tohoku Univ.34136Google Scholar
  30. Ishikuri, S., Suwa, Y., Hattori, T 1984Soil Sci. Plant Nutr.30249253Google Scholar
  31. Cochran, W. G. 1950Biometrics6105116PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Shufang Wang
    • 1
  • Cunjiang Song
    • 2
  • Wataru Mizuno
    • 3
  • Mitsuyo Sano
    • 4
  • Maeda Maki
    • 4
  • Chao Yang
    • 2
  • Banghua Zhang
    • 1
  • Shigeya Takeuchi
    • 4
  1. 1.State Key Laboratory of Functional Polymer Materials for Adsorption and SeparationInstitute of Polymer Chemistry, Nankai UniversityTianjinP. R. China
  2. 2.Department of Microbiology, Life Science CollegeInstitute of Polymer Chemistry, Nankai UniversityTianjinP. R. China
  3. 3.Toyama Industrial Technology CenterToyama Japan
  4. 4.Faculty of EducationToyama UniversityToyama Japan

Personalised recommendations