Advertisement

Security Aware Virtual Network Embedding Algorithm Using Information Entropy TOPSIS

  • 155 Accesses

Abstract

Network virtualization is an effective manner to address the ossification issue of Internet architecture. Virtual network embedding is one of the most critical techniques in network virtualization environments. Several security problems about virtual network embedding are introduced due to the fact that virtual network embedding adds a virtual layer into the internet architecture. In this paper, we proposed an approach for security aware virtual network embedding called SA-VNE to address the security problems in virtual network embedding process. Firstly, we use the information entropy TOPSIS method to rank the importance of substrate nodes with an aim to choose the most appropriate substrate node for accommodating the virtual node. Secondly, we use the shortest path algorithm to perform the link mapping process. Simulation results demonstrated that our proposed SA-VNE algorithm behaves better that those of state-of-the-art existing security aware virtual network embedding algorithms in terms of the long-term average revenue, the long-term average VN acceptance ratio, the long-term average revenue to cost ratio and the running time.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bianchi, F., Presti, F.L.: A markov reward model based greedy heuristic for the virtual network embedding problem. In: IEEE International Symposium on Modeling. Analysis and Simulation of Computer and Telecommunication Systems, pp. 373–378 (2016)

  2. 2.

    Zhang, P., Yao, H., Liu, Y.: Virtual network embedding based on the degree and clustering coefficient information. IEEE Access 4, 8572–8580 (2017)

  3. 3.

    Zhang, P., Yao, H., Li, M., Liu, Y.: Virtual network embedding based on modified genetic algorithm. Peer-to-Peer Netw. Appl. 2, 1–12 (2017)

  4. 4.

    Zhang, Z., Su, S., Zhang, J., Shuang, K., Xu, P.: Energy aware virtual network embedding with dynamic demands: online and offline. IEEE/ACM Trans. Netw. 22(5), 1607–1620 (2014)

  5. 5.

    Botero, J.F., Hesselbach, X.: Greener networking in a network virtualization environment. Comput. Netw. 57(9), 2021–2039 (2013)

  6. 6.

    Su, S., Zhang, Z., Cheng, X., Wang,Y., Luo, Y., Wang, J.: Energy-aware virtual network embedding through consolidation. In: Computer Communications Workshops, pp. 127–132 (2012)

  7. 7.

    Purushothaman, L., Truong-Huu, T., Gurusamy, M.: Time and bandwidth-aware virtual network embedding and migration in hybrid optical-electrical data centers. In: IEEE International Conference on Advanced Information Networking and Applications (2017)

  8. 8.

    Zhang, P., Yao, H., Fang, C., Liu, Y.: Multi-objective enhanced particle swarm optimization in virtual network embedding. EURASIP J. Wirel. Commun. Netw. 2016(1), 167 (2016)

  9. 9.

    Infhr, J., Raidl, G.: A memetic algorithm for the virtual network mapping problem. J. Heuristics 22(4), 475–505 (2016)

  10. 10.

    Rahman, M.R., Boutaba, R.: SVNE: survivable virtual network embedding algorithms for network virtualization. IEEE Trans. Netw. Serv. Manag. 10(2), 105–118 (2013)

  11. 11.

    Xiao, A., Wang, Y., Meng, L., Qiu, X., Li, W.: Topology-aware remapping to survive virtual networks against substrate node failures. In: Network Operations and Management Symposium, pp. 1–6 (2013)

  12. 12.

    Xiao, A., Wang, Y., Meng, L., Xuesong, Q., Li, W.: Topology-aware virtual network embedding to survive multiple node failures. In: IEEE Global Communications Conference 2014, pp. 1823–1828 (2014)

  13. 13.

    Fischer, A., Meer, H.D.: Position paper: secure virtual network embedding. PIK - Prax. der Informationsverarbeitung und Kommunikation 34(4), 190–193 (2011)

  14. 14.

    Liu, S., Cai, Z., Xu, H., Xu, M.: Towards security-aware virtual network embedding. Comput. Netw. 91(C), 151–163 (2015)

  15. 15.

    Gong, S.Q., Chen, J., Huang, C.H., Zhu, Q.C.: Trust-aware secure virtual network embedding algorithm. J. Commun. 36(11), 180–189 (2015)

  16. 16.

    Gong, S., Chen, J., Huang, C., Zhu, Q., Zhao, S.: Virtual network embedding through security risk awareness and optimization. KSII Trans. Internet Inf. Syst. 10(7), 2892–2913 (2016)

  17. 17.

    Cao, H., Hu, H., Qu, Z., Yang, L.: Heuristic solutions of virtual network embedding: a survey. China Commun. 15(3), 186–219 (2018)

  18. 18.

    Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)

  19. 19.

    Rost, M., Schmid, S.: Virtual network embedding approximations: leveraging randomized rounding, IFIP Networking. Zurich, Switzerland, May 14–16 (2018)

  20. 20.

    Sun, Z., Bai, Y., Wang, S., Cao, Y., Xu, S.: A virtual network embedding algorithm based on graph theory, vol. 8147, pp. 1–12 (2017)

  21. 21.

    Zhang, P., Yao, H., Liu, Y.: virtual network embedding based on computing, network and storage resource constraints. IEEE Internet Things J. 5(5), 3298–3304 (2018)

  22. 22.

    Zhang, P., Yao, H., Chao, Q., Liu, Y.: Virtual network embedding using node multiple metrics based on simplified electre method. IEEE Access 6, 37314–37327 (2018)

  23. 23.

    He, M., Lei, Z., Tian, S., Wang, G., Zhang, K.: Multi-objective virtual network embedding algorithm based on Q-learning and curiosity-driven. EURASIP J. Wirel. Commun. Netw. 2018(1), 150 (2018)

  24. 24.

    Yao, H., Xu, C., Li, M., Zhang, P., Wang, L.: A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing 284, 1–9 (2018)

  25. 25.

    Yao, H., Zhang, B., Zhang, P., Wu, S., Guo, S.: RDAM: a reinforcement learning based dynamic attribute matrix representation for virtual network embedding. IEEE Trans. Emerg. Top. Comput. PP(99), 1–1 (2018)

  26. 26.

    Wang, Y., Chau, P., Chen, F.: A framework for security-aware virtual network embedding. In: International Conference on Computer Communication and Networks, pp. 1–7 (2015)

  27. 27.

    Bays, L.R., Oliveira, R.R., Buriol, L.S., Barcellos, M.P., Gaspary, L.P.: Security-aware optimal resource allocation for virtual network embedding. In: Network and Service Management, pp. 378–384 (2012)

  28. 28.

    Xing, C.Q., Lan, J.L., Hu, Y.X: Virtual network with security guarantee embedding algorithms. J. Comput. 8(11), 2782–2788 (2013)

  29. 29.

    Alaluna, M., Ferrolho, L., Figueira, J.R., Neves, N., Ramos, F.M.V.: Secure virtual network embedding in a multi-cloud environment (2017)

  30. 30.

    Beikta, C., Gzpek, D., Ula, A., Lokman, E.: Secure virtual network embedding with flexible bandwidth-based revenue maximization. Comput. Netw. 121, 89–99 (2017)

  31. 31.

    Liu, X., Wang, B., Liu, S., Yang, Z., Zhao, Z.: Heuristic algorithm for secure virtual network embedding. Syst. Eng. Electron. 40(3), 676–681 (2018)

Download references

Acknowledgements

This work is supported by “the Fundamental Research Funds for the Central Universities” of China University of Petroleum (East China) (Grant No. 18CX02139A), the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014FQ018), the National Natural Science Foundation of China (Grant No. 61471056, 61877002), and the China research project on key technology strategy of infrastructure security for information network development. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Correspondence to Peiying Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Li, H., Ni, Y. et al. Security Aware Virtual Network Embedding Algorithm Using Information Entropy TOPSIS. J Netw Syst Manage 28, 35–57 (2020). https://doi.org/10.1007/s10922-019-09500-4

Download citation

Keywords

  • Security aware virtual network embedding
  • Information entropy
  • Security risk
  • Information entropy TOPSIS