Journal of Network and Systems Management

, Volume 28, Issue 1, pp 108–132 | Cite as

Mechanism Design for Exchanging Resources in Federated Networks

  • Abbas EhsanfarEmail author
  • Paul T. Grogan


This paper introduces a mechanism for pricing and exchanging resources in federated networks of task-processing elements. An operational model is developed to allocate processing, storage and communication resources to computational demands. This model finds an efficient and stable solution to combinatorial routing and allocating resources among networked elements with technical constraints. Using mixed-integer linear programming (MILP) formulation, we find optimal solution to processing tasks, allocating links, storing and delivering data to destination. A trusted auctioneer uses a mechanism to allocate resources to computational tasks and suggests prices for exchanging resources across a federation using minimum number of MILP solutions to a network topology. The proposed mechanism maximizes the collective value for a federation and ensures an expected value for each federate and minimizes the computational cost associated with the operational runs. The auctioneer doesn’t have access to utility functions and private information on resources a priori while assumes a federation with self-centric and rational participants. An application of federated satellite systems is developed with endogenous components such as adaptive bidding and opportunity cost of using resources. Numerical results show that the proposed mechanism improves the collective and expected values in a federation with strategic federates.


Pricing Routing Allocation model Communication routing Auctioneer Utility function Strategic bidding 


  1. 1.
    Wolverton, T.: Investors love Amazon’s cloud and advertising efforts, but it could have just gotten a big boost from an older business (2018). Accessed 24 Oct 2018
  2. 2.
    Hartmans, A.: The 10 billion club: meet the most valuable startups in the US (2017). Accessed 9 Dec 2017
  3. 3.
    Einav, L., Farronato, C., Levin, J.: Peer-to-peer markets. Annu. Rev. Econ. 8, 615–635 (2016). CrossRefGoogle Scholar
  4. 4.
    Barnett, M.: The sharing economy: understanding the opportunities for growth (2017). Accessed 26 June 2017
  5. 5.
    Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw. Syst. Manag. 23(3), 567–619 (2015). CrossRefGoogle Scholar
  6. 6.
    Sage, A.P., Cuppan, C.D.: On the systems engineering and management of systems of systems and federations of systems. Inf. Knowl. Syst. Manag. 2(4), 325–345 (2001)Google Scholar
  7. 7.
    Golkar, A., i Cruz, I.L.: The federated satellite systems paradigm: concept and business case evaluation. Acta Astronaut. 111, 230–248 (2015). CrossRefGoogle Scholar
  8. 8.
    Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. ACM SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2008). CrossRefGoogle Scholar
  9. 9.
    Famaey, J., Latré, S., Wauters, T., De Turck, F.: End-to-end resource management for federated delivery of multimedia services. J. Netw. Syst. Manag. 22(3), 396–433 (2014). CrossRefGoogle Scholar
  10. 10.
    Antoniadis, P., Fdida, S., Friedman, T., Misra, V.: Federation of virtualized infrastructures: sharing the value of diversity. In: Proceedings of 6th Conference on Emerging Network Experiment and Technology ACM (2010).
  11. 11.
    Jennings, B., Feeney, K., Fleck, J.J.: Managing federations and cooperative management. J. Netw. Syst. Manag. 22(3), 297–301 (2014). CrossRefGoogle Scholar
  12. 12.
    Ehsanfar, A., Heydari, B.: An incentive-compatible scheme for electricity cooperatives: an axiomatic approach. IEEE Trans. Smart Grid (2016). CrossRefGoogle Scholar
  13. 13.
    Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Ricci, R., Seskar, I.: Geni: a federated testbed for innovative network experiments. Comput. Netw. 61, 5–23 (2014). CrossRefGoogle Scholar
  14. 14.
    Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A.: AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66(1), 1–16 (1998). CrossRefGoogle Scholar
  15. 15.
    Grogan, P.T., Ho, K., Golkar, A., de Weck, O.L.: Multi-actor value modeling for federated systems. IEEE Syst. J. (2016). CrossRefGoogle Scholar
  16. 16.
    Grogan, P.T., de Weck, O.L.: Interactive simulation games to assess federated satellite system concepts. In: Proceedings of 2015 IEEE Aerospace Conference, pp. 1–13. IEEE (2015).
  17. 17.
    Selva, D., Collopy, P., de Weck, O.L.: Distributed earth satellite systems: what is needed to move forward? J. Aerosp. Comput. Inf. Commun. (2017). CrossRefGoogle Scholar
  18. 18.
    Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013). CrossRefGoogle Scholar
  19. 19.
    Albini, L.C.P., Caruso, A., Chessa, S., Maestrini, P.: Reliable routing in wireless ad hoc networks: the virtual routing protocol. J. Netw. Syst. Manag. 14(3), 335–358 (2006). CrossRefGoogle Scholar
  20. 20.
    Cesana, M., Cuomo, F., Ekici, E.: Routing in cognitive radio networks: challenges and solutions. Ad Hoc Netw. 9(3), 228–248 (2011). CrossRefGoogle Scholar
  21. 21.
    Chabini, I.: Discrete dynamic shortest path problems in transportation applications: complexity and algorithms with optimal run time. Transp. Res. Rec. 1645, 170–175 (1998). CrossRefGoogle Scholar
  22. 22.
    Royer, E.M., Perkins, C.E.: Multicast operation of the ad-hoc on-demand distance vector routing protocol. In: Proceedings of 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 207–218. ACM (1999).
  23. 23.
    Lee, S.J., Gerla, M., Chiang, C.C.: On-demand multicast routing protocol. In: Proceedings of 1999 IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1298–1302. IEEE (1999).
  24. 24.
    Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Optimal multicast routing with quality of service constraints. J. Netw. Syst. Manag. 4(2), 107–131 (1996). CrossRefGoogle Scholar
  25. 25.
    Gombolay, M.C., Wilcox, R., Shah, J.A.: Fast scheduling of multi-robot teams with temporospatial constraints. In: Proceedings of Robotics: Science and Systems (2013)Google Scholar
  26. 26.
    Werner, M.: A dynamic routing concept for ATM-based satellite personal communication networks. IEEE J. Sel. Areas Commun. 15(8), 1636–1648 (1997). CrossRefGoogle Scholar
  27. 27.
    Marce, O., Tran, H.H., Tuffin, B.: Double-sided auctions applied to vertical handover for mobility management in wireless networks. J. Netw. Syst. Manag. 22(4), 658–681 (2014). CrossRefGoogle Scholar
  28. 28.
    Kutanoglu, E., David Wu, S.: On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans. 31(9), 813–826 (1999). CrossRefGoogle Scholar
  29. 29.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: Proceedings 2nd ACM Conference on Electronic Commerce, pp. 66–76. ACM (2000).
  30. 30.
    Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., Jiao, B.: Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach. IEEE J. Sel. Areas Commun. 31(9), 348–358 (2013). CrossRefGoogle Scholar
  31. 31.
    Li, C.F.: Cloud computing system management under flat rate pricing. J. Netw. Syst. Manag. 19(3), 305–318 (2011). CrossRefGoogle Scholar
  32. 32.
    Rebai, S.: Resource allocation in cloud federation. Ph.D. thesis, Institut National des Télécommunications (2017)Google Scholar
  33. 33.
    Zhang, L., Li, Z., Wu, C.: Dynamic resource provisioning in cloud computing: a randomized auction approach. In: Proceeings of 2014 IEEE Conference on Computer Communications, pp. 433–441. IEEE (2014).
  34. 34.
    Liaqat, M., Chang, V., Gani, A., Ab Hamid, S.H., Toseef, M., Shoaib, U., Ali, R.L.: Federated cloud resource management: review and discussion. J. Netw. Comput. Appl. 77, 87–105 (2017). CrossRefGoogle Scholar
  35. 35.
    Do, C.T., Tran, N.H., Huh, E.N., Hong, C.S., Niyato, D., Han, Z.: Dynamics of service selection and provider pricing game in heterogeneous cloud market. J. Netw. Comput. Appl. 69, 152–165 (2016)CrossRefGoogle Scholar
  36. 36.
    Toosi, A.N., Vanmechelen, K., Khodadadi, F., Buyya, R.: An auction mechanism for cloud spot markets. ACM Trans. Autom. Adapt. Syst. 11(1), 2 (2016). CrossRefGoogle Scholar
  37. 37.
    Pica, U., Golkar, A.: Sealed-bid reverse auction pricing mechanisms for federated satellite systems. Syst. Eng. 20(5), 432–446 (2017). CrossRefGoogle Scholar
  38. 38.
    Kumar, D., Baranwal, G., Raza, Z., Vidyarthi, D.P.: A systematic study of double auction mechanisms in cloud computing. J. Syst. Softw. 125, 234–255 (2017). CrossRefGoogle Scholar
  39. 39.
    Grogan, P.T., de Weck, O.L.: The ISoS modeling framework for infrastructure systems simulation. IEEE Syst. J. 9(4), 1139–1150 (2015). CrossRefGoogle Scholar
  40. 40.
    Perez, R.E., Jansen, P.W., Martins, J.R.: pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Struct. Multidiscip. Optim. 45(1), 101–118 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992). CrossRefzbMATHGoogle Scholar
  42. 42.
    Driessens, K., Ramon, J., Gärtner, T.: Graph kernels and Gaussian processes for relational reinforcement learning. Mach. Learn. 64(1), 91–119 (2006). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Enterprise Advice & AIVanguardUSA
  2. 2.School of Systems and EnterprisesStevens Institute of TechnologyHobokenUSA

Personalised recommendations