Advertisement

Latency Control of ICN Enabled 5G Networks

  • 158 Accesses

Abstract

5G definition falls broadly into order of achievable data rate and reduction in end-to-end latency. Thanks to emerging technologies many features are available in the 5G design to detect, control and avoid congestion in the backhaul networks. In fact, 5G results from the conjunction of several recent technological developments, chief among them the re-purposing of next generation of wireless networks for large-scale functional connectivity and carrying of massive heterogeneous contents. For instance, information centric networks, as a promising candidate for the wireless caching architecture, can cache the contents and prohibits traffic avalanche entering the backhaul via content-based networking. The main objective of this paper is to minimize latency in 5G backhaul networks. The contribution of this paper is a twofold: (a) a distributed algorithm at the back-haul switches is proposed to detect and handle the congestion temporarily and locally with considering the fairness, IP friendliness, latency and convergence time. (b) an SDN-based centralized algorithm is proposed to treat the congestion via dynamic route selection, load-balancing, the orchestration of heterogeneous RBS components.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

  2. 2.

    Demestichas, P., Georgakopoulos, A.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

  3. 3.

    Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–32 (2015)

  4. 4.

    Carofiglio, G., Gallo, M., Muscariello, L., Perino, D.: Scalable mobile backhauling via information-centric networking. In: The 21st IEEE International Workshop on Local and Metropolitan Area Networks, pp. 1–6 (2015)

  5. 5.

    Salsano, S., Blefari-Melazzi, N., Detti, A., Morabito, G., Veltri, L.: Information centric networking over SDN and OpenFlow: architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 57(16), 3207–3221 (2013)

  6. 6.

    Woo, S., Jeong, E., Park, S., Lee, J., Ihm, S., Park, K.: Comparison of caching strategies in modern cellular backhaul networks. In: Proceeding of ACM MobiSys (2013)

  7. 7.

    Rodrigues, M., Dn, G., Gallo, M.: Enabling transparent caching in LTE mobile backhaul networks with SDN. In: Proceeding of IEEE Computer Communications Workshops (INFOCOM WKSHPS), pp. 724–729 (2016)

  8. 8.

    Liang, C., Yu, F.R., Zhang, X.: Information-centric network function virtualization over 5G mobile wireless networks. IEEE Netw. 29(3), 68–74 (2015)

  9. 9.

    Rost, P., Bernardos, C.J., De Domenico, A., Di Girolamo, M., Lalam, M., Maeder, A., Sabella, D., Wbben, D.: Cloud technologies for flexible 5G radio access networks. IEEE Commun. Mag. 52(5), 68–76 (2014)

  10. 10.

    Checko, A., Christiansen, H.L., Yan, Y., Scolari, L., Kardaras, G., Berger, M.S., Dittmann, L.: Cloud RAN for mobile networksa technology overview. IEEE Commun. Surv. 17(1), 405–26 (2015)

  11. 11.

    Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)

  12. 12.

    Wubben, D., Rost, P., Bartelt, J.S., Lalam, M., Savin, V., Gorgoglione, M., Dekorsy, A., Fettweis, G.: Bene ts and impact of cloud computing on 5G signal process- ing: flexible centralization through cloud-ran. IEEE Signal Process. Mag. 31(6), 35–44 (2014)

  13. 13.

    Öhlen, P., Skubic, B., Rostami, A., Laraqui, K., Cavaliere, F., Varga, B., Fonseca, N.: Flexibility in 5G transport networks: the key to meeting the demand for connectivity. Ericsson Technol. Rev. 3, 1–8 (2015)

  14. 14.

    Landstrm, S., Bergstrm, J., Westerberg, E., Hammarwall, D.: NB- IoT: a sustainable technology for connecting billions of devices. Ericsson Technol. Rev. 4, 211 (2016)

  15. 15.

    Drake, E., Elkhayat, I., Quinet, R., Wenmyr, E., Wu, J.: Paving the way to telco-Grade PAAS. Ericsson Technol. Rev. 6, 4354 (2016)

  16. 16.

    Pompili, D., Hajisami, A., Tran, T.X.: Elastic resource utilization framework for high capacity and energy efficiency in cloud RAN. IEEE Commun. Mag. 54(1), 26–32 (2016)

  17. 17.

    Ren, Y., Li, J., Shi, S., Li, L., Wang, G., Zhang, B.: Congestion control in named data networking: a survey. Comput. Commun. 86, 1–11 (2016)

  18. 18.

    Yi, C., Afanasyev, A., Wang, L., Zhang, B., Zhang, L.: Adaptive forwarding in named data networking. ACM SIGCOMM Comput. Commun. Rev. 42(3), 6267 (2012)

  19. 19.

    Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., Zhang, L.: A case for stateful forwarding plane. Comput. Commun. Inf. Centric Netw. 36(7), 779791 (2013)

  20. 20.

    Wang, X., Chen, M., Taleb, T., Ksentini, A., Leung, V.: Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 1–18 (2014)

  21. 21.

    Braun, S., Monti, M., Sifalakis, M., Tschudin, C.: An empirical study of receiver-based AIMD flow-control strategies for CCN. In: Proceeding of IEEE International Conference on Computer Communication and Networks (ICCCN) (2013)

  22. 22.

    Braun, S., Monti, M., Sifalakis, M., Tschudin, C.: TCP co-existence in the future internet: should CCN be compatible to TCP? In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013) May 27, pp. 1109–1115. IEEE (2013)

  23. 23.

    Dukkipati, N.: Rate control protocol (rcp): congestion control to make flows complete quickly, Ph.D. Dissertation, Stanford University, Stanford, CA, USA: ford, p. 2008. CA, USA (2008)

  24. 24.

    Yang, C.Q., Reddy, A.V.: A taxonomy for congestion control algorithms in packet switching networks. IEEE Netw. 9(4), 34–45 (1995)

  25. 25.

    Carofiglio, G., Gallo, M., Muscariello, L.: ICP: design and evaluation of an interest control protocol for content-centric networking. In: Proceeding of IEEE INFOCOM Workshop on Emerging Design Choices In Name Oriented Networking (INFO-COM NOMEN) (2012)

  26. 26.

    Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Receiver driven interest control protocol for content-centric networks. In: Proceeding of ACM SIGCOMM Workshop on Information Centric Networking (ICN) (2012)

  27. 27.

    Amadeo, M., Molinaro, A., Campolo, C., Sifalakis, M.: Transport layer design for named data wireless networking. In: Proceeding of IEEE INFOCOM Workshop on Name-Oriented Mobility (2014)

  28. 28.

    Arianfar, S., Nikander, P., Eggert, L., Ott, J.: Contug: a receiver driven transport protocol for content-centric networks. In: Proceeding of IEEE ICNP (2010)

  29. 29.

    Saino, L., Cocora, C., Pavlou, G.: CCTCP: a scalable receiver-driven congestion control protocol for content centric networking. In: Proceeding of IEEE ICC13 (2013)

  30. 30.

    Carofiglio, G., Gallo, M., Muscariello, L., Papalini, M.: Multipath congestion control in content-centric networks. In: Proceeding of IEEE INFOCOM 2013 Workshop on Emerging Design Choices in Name-Oriented Networking (2013)

  31. 31.

    Fu, T., Li, Y., Lin, T., Tan, H., Tang, H., Ci, S.: An effective congestion control scheme in content-centric networking. In: Proceeding of 13th International Conference on Parallel and Distributed Computing, Applications and Technologies (2012)

  32. 32.

    Ren, Y., Li, J., Shi, S., Li, L., Chang, X.: An interest control protocol for named data networking based on explicit feedback. In: Proceeding of the 11th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS 15) (2015)

  33. 33.

    Zhou, J., Wu, Q., Li, Z., Kaafar, M.A., Xie, G.: A proactive transport mechanism with explicit congestion notification for NDN. In: Proceeding of ICC (2015)

  34. 34.

    Rozhnova, N., Fdida, S.: An effective hop-by-hop interest shaping mechanism for CCN communications. In: Proceeding of IEEE INFOCOM NOMEN Workshop (2012)

  35. 35.

    Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., Rhee, I.: An improved hop-by-hop interest shaper for congestion control in named data networking. In: Proceeding of ICN13 (2013)

  36. 36.

    Carofiglio, G., Gallo, M., Muscariello, L.: Joint hop-by-hop and receiver-driven interest control protocol for content-centric networks. In: Proceeding of ACM SIGCOMM Workshop on Information Centric Networking (ICN) (2012)

  37. 37.

    Zhang, F., Xu, C., Zhang, Y., Reznik, A., Liu, H., Qian, C.: A transport protocol for content-centric networking with explicit congestion control. In: Proceeding of the 23rd International Conference on Computer Communications and Networks (ICCCN) (2014)

  38. 38.

    Zhang, F., Zhang, Y., Reznik, A., Liuc, H., Qiand, C., Xue, C.: Providing explicit congestion control and multi-homing support for content-centric networking transport. Comput. Commun. 69, 6978 (2015)

  39. 39.

    Matsuzono, K., Asaeda, H.: NRTS: content name-based real-time streaming. In: Proceeding of 13th IEEE Annual Consumer Communications and Networking Conference (CCNC) pp. 537–543 (2016)

  40. 40.

    Matsuzono, K., Asaeda, H.: NMRTS: content name-based mobile realtime streaming. IEEE Commun. Mag. 54(8), 92–8 (2016)

  41. 41.

    Carofiglio, G., Gallo, M., Muscariello, L.: Optimal multipath congestion control and request forwarding in information-centric networks: protocol design and experimentation. Comput. Netw. 110, 10417 (2016)

  42. 42.

    Mahdian, M., Arianfar, S., Gibson, J., Oran, D.: MIRCC: multipath-aware ICN rate-based congestion control. In: Proceedings of the 2016 Conference on 3rd ACM Conference on Information-Centric Networking, pp. 1–10 (2016)

  43. 43.

    Chen, J., Arumaithurai, M., Fu, X., X., Ramakrishnan, K.K.: SAID: A Control Protocol for Scalable and Adaptive Information Dissemination in ICN. arXiv:1510.08530 (2015)

  44. 44.

    Schneider, K., Yi, C., Zhang, B., Zhang, L.: A practical congestion control scheme for named data networking. In: Proceedings of the 2016 Conference on 3rd ACM Conference on Information-Centric Networking, pp. 21–30 (2016)

  45. 45.

    Raina, G., Towsley, D., Wischik, D.: Part II: control theory for buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 35(3), 79–82 (2005)

  46. 46.

    Bhattacharyya, S., Towsley, D., Kurose, J.: The loss path multiplicity problem in multicast congestion control. Proc. IEEE INFOCOM 2, 856–63 (1999)

  47. 47.

    Nichols, K., Jacobson, V., McGregor, A., Iyengar, J.: Controlled delay active queue management, RFC 8289. http://rfc-editor.org/rfc/rfc8289.txt (2016)

  48. 48.

    Duffield, N., Lund, C., Thorup, M.: Properties and prediction of flow statistics from sampled packet streams. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement, pp. 159–171 (2002)

  49. 49.

    Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled flow statistics. IEEE/ACM Trans. Netw. (TON) 13(5), 933–946 (2005)

  50. 50.

    Cheng, G.: Estimating the number of active flows from sampled packets. In: IEEE Network Operations and Management Symposium, pp. 675–678 (2012)

  51. 51.

    Hu, C., Liu, B., Zhao, H., Chen, K., Chen, Y., Cheng, Y., Wu, H.: Discount counting for fast flow statistics on flow size and flow volume. IEEE/ACM Trans. Netw. (TON) 22(3), 97081 (2014)

  52. 52.

    Choi, W., Seok, W.: Time-based forwarding control in content centric networking. In: Proceeding of 18th International Conference on Advanced Communication Technology (ICACT), pp. 643–646 (2016)

Download references

Author information

Correspondence to Shahin Vakilinia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vakilinia, S., Elbiaze, H. Latency Control of ICN Enabled 5G Networks. J Netw Syst Manage 28, 81–107 (2020). https://doi.org/10.1007/s10922-019-09497-w

Download citation

Keywords

  • 5G
  • Congestion avoidance
  • Latency
  • ICN
  • Caching
  • MEC
  • C-RAN
  • SDN