Slicing in WiFi Networks Through Airtime-Based Resource Allocation

  • Matías RichartEmail author
  • Javier Baliosian
  • Joan Serrat
  • Juan-Luis Gorricho
  • Ramón Agüero


Network slicing is one of the key enabling technologies for 5G networks. It allows infrastructure owners to assign resources to service providers (tenants), which will afterwards use them to satisfy their end-user demands. This paradigm, which changes the way networks have been traditionally managed, was initially proposed in the wired realm (core networks). More recently, the scientific community has paid attention to the integration of network slicing in wireless cellular technologies (LTE). However, there are not many works addressing the challenges that appear when trying to exploit slicing techniques over WiFi networks, in spite of their growing relevance. In this paper we propose a novel method of proportionally distributing resources in WiFi networks, by means of the airtime. We develop an analytical model, which shed light on how such resources could be split. The validity of the proposed model is assessed by means of simulation-based evaluation over the ns-3 framework


Wireless network slicing Wireless resource management Airtime allocation Queue scheduling Deficit round robin 5G WiFi 



This work has been supported in part by the European Commission and the Spanish Government (Fondo Europeo de desarrollo Regional, FEDER) by means of the EU H2020 NECOS (777067) and ADVICE (TEC2015-71329) projects, respectively.


  1. 1.
    Li, Q., Niu, H., Wu, G., Fong, M.H., Papathanassiou, A.: Slicing architecture for wireless communication. US Patent 9,775,045 (2017)Google Scholar
  2. 2.
    Kusume, K., Fallgren, M., Queseth, O., Braun, V., Gozalvez-Serrano, D., Korthals, I., Zimmermann, G., Schubert, M., Hossain, M.I., Widaa, A.A., Chatzikokolakis, K., Holakouei, R., Jeux, S., Hernando, J.L., Boldi, M.: Deliverable D1.5. Updated scenarios, requirements and KPIs for 5G mobile and wireless system with recommendations for future investigations. (2015). Accessed 20 Nov 2018
  3. 3.
    Ericsson: 5G systems (white paper). Technical report Uen 284 23-3244, Ericsson. (2015). Accessed 20 Nov 2018
  4. 4.
    Richart, M., Baliosian, J., Serrat, J., Gorricho, J.L., Agüero, R., Agoulmine, N.: Resource allocation for network slicing in wifi access points. In: IEEE (ed.) 2017 13th International Conference on Network and Service Management (CNSM). IEEE (2017)Google Scholar
  5. 5.
    Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of 802.11 b. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 2, pp. 836–843. IEEE (2003)Google Scholar
  6. 6.
    Høiland-Jørgensen, T., Kazior, M., Täht, D., Hurtig, P., Brunstrom, A.: Ending the anomaly: achieving low latency and airtime fairness in wifi. In: 2017 USENIX Annual Technical Conference (USENIX ATC 17), pp. 139–151. USENIX Association, Santa Clara, CA. (2017). Accessed 20 Nov 2018
  7. 7.
    Riggio, R., Miorandi, D., Chlamtac, I.: Airtime deficit round robin (adrr) packet scheduling algorithm. In: 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems. MASS 2008, pp. 647–652. IEEE (2008)Google Scholar
  8. 8.
    Garroppo, R.G., Giordano, S., Lucetti, S., Tavanti, L.: Providing air-time usage fairness in IEEE 802.11 networks with the deficit transmission time (dtt) scheduler. Wirel. Netw. 13(4), 481–495 (2007)CrossRefGoogle Scholar
  9. 9.
    Shreedhar, M., Varghese, G.: Efficient fair queueing using deficit round robin. SIGCOMM Comput. Commun. Rev. 25(4), 231–242 (1995). CrossRefGoogle Scholar
  10. 10.
    Aboba, B.: Virtual access points. Technical report IEEE 802.11-03/154r0, Microsoft, One Microsoft Way, Redmond, WA 98052-6399 (2003)Google Scholar
  11. 11.
    Xia, L., Kumar, S., Yang, X., Gopalakrishnan, P., Liu, Y., Schoenberg, S., Guo, X.: Virtual wifi: bring virtualization from wired to wireless. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’11, pp. 181–192. ACM, New York, NY, USA (2011).
  12. 12.
    Aljabari, G., Eren, E.: Virtualization of wireless LAN infrastructures. In: 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol. 2, pp. 837–841. IEEE (2011)Google Scholar
  13. 13.
    Richart, M., Baliosian, J., Serrat, J., Gorricho, J.L.: Resource slicing in virtual wireless networks: a survey. IEEE Trans. Netw. Serv. Manag. 13(3), 462–476 (2016)CrossRefGoogle Scholar
  14. 14.
    Banchs, A., Serrano, P., Patras, P., Natkaniec, M.: Providing throughput and fairness guarantees in virtualized wlans through control theory. Mob. Netw. Appl. 17(4), 435–446 (2012). CrossRefGoogle Scholar
  15. 15.
    Nakauchi, K., Shoji, Y., Nishinaga, N.: Airtime-based resource control in wireless LANs for wireless network virtualization. In: 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 166–169. IEEE (2012)Google Scholar
  16. 16.
    Guo, K., Sanadhya, S., Woo, T.: ViFi: virtualizing WLAN using commodity hardware. ACM SIGMOBILE Mob. Comput. Commun. Rev. 18(3), 41–48 (2015)CrossRefGoogle Scholar
  17. 17.
    Derakhshani, M., Wang, X., Le-Ngoc, T., Leon-Garcia, A.: Virtualization of multi-cell 802.11 networks: association and airtime control. arXiv preprint arXiv:1508.03554 (2015)
  18. 18.
    Katsalis, K., Choumas, K., Korakis, T., Tassiulas, L.: Virtual 802.11 wireless networks with guaranteed throughout sharing. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 845–850. IEEE (2015)Google Scholar
  19. 19.
    Bhanage, G., Vete, D., Seskar, I., Raychaudhuri, D.: Splitap: leveraging wireless network virtualization for flexible sharing of WLANs. In: Global Telecommunications Conference (GLOBECOM 2010), IEEE, pp. 1–6. IEEE (2010)Google Scholar
  20. 20.
    Bhanage, G., Daya, R., Seskar, I., Raychaudhuri, D.: VNTS: a virtual network traffic shaper for air time fairness in 802.16 e systems. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2010)Google Scholar
  21. 21.
    van de Belt, J., Ahmadi, H., Doyle, L.E.: Defining and surveying wireless link virtualization and wireless network virtualization. IEEE Commun. Surv. Tutor. 19(3), 1603–1627 (2017)CrossRefGoogle Scholar
  22. 22.
    Zaki, Y., Zhao, L., Goerg, C., Timm-Giel, A.: LTE wireless virtualization and spectrum management. In: Wireless and Mobile Networking Conference (WMNC), 2010 Third Joint IFIP, pp. 1–6. IEEE (2010)Google Scholar
  23. 23.
    Adiseshu, H., Parulkar, G., Varghese, G.: A reliable and scalable striping protocol. ACM SIGCOMM Comput. Commun. Rev. 26(4), 131–141 (1996)CrossRefGoogle Scholar
  24. 24.
    Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys, J., Dumazet, E.: The flowqueue-codel packet scheduler and active queue management algorithm. Internet-Draft draft-ietf-aqm-fq-codel-06, IETF Secretariat. (2016). Accessed 20 Nov 2018
  25. 25.
    IEEE Std \(802.11^{{\rm TM}}\)-2012, IEEE Standard for Information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: WLAN MAC and PHY specifications. Online (2012)Google Scholar
  26. 26.
    NS-3 Network Simulator. Accessed 20 Nov 2018
  27. 27.
    Richart, M.: mrichart/ns-3-dev-git: airtime slicing simulation code for ns3 (2018).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringUniversity of the RepublicMontevideoUruguay
  2. 2.Network Engineering DepartmentPolytechnic University of CataloniaBarcelonaSpain
  3. 3.University of CantabriaSantanderSpain

Personalised recommendations