Advertisement

FUZA: An Algorithm for Definition of Reliable Virtual Networks to the Edge as a Service Paradigm

  • Rafael Lopes Gomes
  • Luiz Fernando Bittencourt
  • Edmundo Roberto Mauro Madeira
Article
  • 33 Downloads

Abstract

Edge as a Service (EaaS) is a promising approach to increase the management capacity of Internet Service Providers (ISPs) and to support QoS/QoE for their clients. EaaS uses Virtual Networks (VNs) to ease the management of ISPs. Thus, EaaS needs an algorithm to define virtual topologies for the VNs considering the resource utilization, the energy consumption and the service delivery reliability. Within this context, this paper presents Fuzzy for Allocation (FUZA) algorithm to define reliable virtual topologies for EaaS. FUZA is based on a fuzzy system and uses energy consumption and bandwidth availability to define the most suitable virtual topology for the VN requested. The results suggest that the proposed algorithm can deploy reliable VNs, while improving bandwidth utilization and energy consumption of the network infrastructure.

Keywords

Edge as a Service Allocation Virtual topology Planning Reliability 

Notes

References

  1. 1.
    Abedin, F., Chao, K.M., Godwin, N.: A fuzzy group decision making process in a multi-agent negotiation environment. In: 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 311–318 (2011)Google Scholar
  2. 2.
    Adeli, H., Sarma, K.: Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing. Wiley, Chichester (2006)CrossRefGoogle Scholar
  3. 3.
    Arslan, E., Yuksel, M., Gunes, M.H.: Training network administrators in a game-like environment. J. Netw. Comput. Appl. 53, 14–23 (2015)CrossRefGoogle Scholar
  4. 4.
    Belzarena, P., Sena, G.G., Amigo, I., Vaton, S.: Sdn-based overlay networks for qos-aware routing. In: Proceedings of the 2016 Workshop on Fostering Latin-American Research in Data Communication Networks, LANCOMM ’16, pp. 19–21. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2940116.2940121
  5. 5.
    Chen, T.M.: Network Traffic Modeling, pp. 326–339 (2007)Google Scholar
  6. 6.
    Couto, RdS, Secci, S., Campista, M.E.M., Costa, L.H.M.K.: Reliability and survivability analysis of data center network topologies. J. Netw. Syst. Manag. 24(2), 346–392 (2016).  https://doi.org/10.1007/s10922-015-9354-8 CrossRefGoogle Scholar
  7. 7.
    Davy, S., Famaey, J., Serrat-Fernandez, J., Gorricho, J., Miron, A., Dramitinos, M., Neves, P., Latre, S., Goshen, E.: Challenges to support edge-as-a-service. IEEE Commun. Mag. 52(1), 132–139 (2014)CrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Finding the k shortest paths. In: 35th Annual Symposium on Foundations of Computer Science, pp. 154–165. IEEE (1994)Google Scholar
  9. 9.
    Gomes, R.L., Bittencourt, L.F., Madeira, E., Cerqueira, E., Gerla, M.: State-Aware allocation of reliable virtual software defined networks based on bandwidth and energy. In: 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 418–423. Las Vegas, USA (2016)Google Scholar
  10. 10.
    Gomes, R.L., Bittencourt, L.F., Madeira, E.R., Cerqueira, E., Gerla, M.: A combined energy-bandwidth approach to allocate resilient virtual software defined networks. J. Netw. Comput. Appl. 69, 98–106 (2016)CrossRefGoogle Scholar
  11. 11.
    Gomes, R.L., Bittencourt, L.F., Madeira, E.R.M.: A virtual network allocation algorithm for reliability negotiation. In: 22st International Conference on Computer Communications and Networks (ICCCN) (2013)Google Scholar
  12. 12.
    Gozdecki, J., Kantor, M., Wajda, K., Rak, J.: Methods of network resource provisioning for the future internet iip initiative. Telecommun. Syst. 61(2), 235–246 (2016).  https://doi.org/10.1007/s11235-015-9997-5 CrossRefGoogle Scholar
  13. 13.
    Huang, C., Li, M., Srinivasan, A.: A scalable path protection mechanism for guaranteed network reliability under multiple failures. IEEE Trans. Reliab. 56(2), 254–267 (2007)CrossRefGoogle Scholar
  14. 14.
    Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE J. Select. Areas Commun. 29(9), 1765–1775 (2011).  https://doi.org/10.1109/JSAC.2011.111002 CrossRefGoogle Scholar
  15. 15.
    Lee, H.W., Modiano, E., Lee, K.: Diverse routing in networks with probabilistic failures. IEEE/ACM Trans. Netw. 18(6), 1895–1907 (2010)CrossRefGoogle Scholar
  16. 16.
    Li, V., Silvester, J.: Performance analysis of networks with unreliable components. IEEE Trans. Commun. 32(10), 1105–1110 (1984)CrossRefGoogle Scholar
  17. 17.
    Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: Energy aware network operations. In: IEEE INFOCOM Workshops, vol. 2009, pp. 1–6 (2009)Google Scholar
  18. 18.
    Mano, T., Inoue, T., Ikarashi, D., Hamada, K., Mizutani, K., Akashi, O.: Efficient virtual network optimization across multiple domains without revealing private information. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–8 (2014).  https://doi.org/10.1109/ICCCN.2014.6911811
  19. 19.
    Parandehgheibi, M., Lee, H.W., Modiano, E.: Survivable path sets: a new approach to survivability in multilayer networks. J. Lightwave Technol. 32(24), 4741–4752 (2014)CrossRefGoogle Scholar
  20. 20.
    Ruckert, J., Blendin, J., Hark, R., Hausheer, D.: Dynsdm: Dynamic and flexible software-defined multicast for isp environments. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 117–125 (2015).  https://doi.org/10.1109/CNSM.2015.7367347
  21. 21.
    Rückert, J., Blendin, J., Hausheer, D.: Software-defined multicast for over-the-top and overlay-based live streaming in isp networks. J. Netw. Syst. Manag. 23(2), 280–308 (2015).  https://doi.org/10.1007/s10922-014-9322-8 CrossRefGoogle Scholar
  22. 22.
    Rueda, D.F., Calle, E., Marzo, J.L.: Robustness comparison of 15 real telecommunication networks: structural and centrality measurements. J. Netw. Syst. Manag. 25(2), 269–289 (2017).  https://doi.org/10.1007/s10922-016-9391-y CrossRefGoogle Scholar
  23. 23.
    Shahriar, N., Ahmed, R., Chowdhury, S.R., Khan, A., Boutaba, R., Mitra, J.: Generalized recovery from node failure in virtual network embedding. IEEE Trans. Netw. Serv. Manag. 14(2), 261–274 (2017).  https://doi.org/10.1109/TNSM.2017.2693404 CrossRefGoogle Scholar
  24. 24.
    Wang, X., Hou, W., Guo, L., Cao, J., Jiang, D.: Energy saving and cost reduction in multi-granularity green optical networks. Comput. Netw. 55(3), 676–688 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhang, S., Kai, C., Song, L.: SDN based uniform network architecture for future wireless networks. In: Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on, pp. 1–5. IEEE (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafael Lopes Gomes
    • 1
  • Luiz Fernando Bittencourt
    • 2
  • Edmundo Roberto Mauro Madeira
    • 2
  1. 1.State University of Ceará (UECE)FortalezaBrazil
  2. 2.University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations