Advertisement

Journal of Network and Systems Management

, Volume 26, Issue 4, pp 1079–1100 | Cite as

Understanding Human Mobility and Workload Dynamics Due to Different Large-Scale Events Using Mobile Phone Data

  • Humberto T. Marques-Neto
  • Faber H. Z. Xavier
  • Wender Z. Xavier
  • Carlos Henrique S. Malab
  • Artur Ziviani
  • Lucas M. Silveira
  • Jussara M. Almeida
Article
  • 175 Downloads

Abstract

The analysis of mobile phone data can help carriers to improve the way they deal with unusual workloads imposed by large-scale events. This paper analyzes human mobility and the resulting dynamics in the network workload caused by three different types of large-scale events: a major soccer match, a rock concert, and a New Year’s Eve celebration, which took place in a large Brazilian city. Our analysis is based on the characterization of records of mobile phone calls made around the time and place of each event. That is, human mobility and network workload are analyzed in terms of the number of mobile phone calls, their inter-arrival and inter-departure times, and their durations. We use heat maps to visually analyze the spatio-temporal dynamics of the movement patterns of the participants of the large-scale event. The results obtained can be helpful to improve the understanding of human mobility caused by large-scale events. Such results could also provide valuable insights for network managers into effective capacity management and planning strategies. We also present PrediTraf, an application built to help the cellphone carriers plan their infrastructure on large-scale events.

Keywords

Mobile network traffic analysis Characterizing user behavior Human mobility on large-scale events Analyzing mobile phone dataset 

Notes

Acknowledgements

This work is supported by FIP PUC Minas (Fundo de Incentivo à Pesquisa of Pontifical Catholic University of Minas Gerais), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), InWeb (MCT CNPq 5738712008-6), INCT-CiD (MCTIC CNPq 465.560/2014-8), and the STIC-AmSud Program (Project 18-STIC-07).

References

  1. 1.
    Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J.M., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Commun. ACM 56(1), 74–82 (2013)CrossRefGoogle Scholar
  2. 2.
    Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015)CrossRefGoogle Scholar
  3. 3.
    Hess, A., Hummel, K.A., Gansterer, W.N., Haring, G.: Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Comput. Surv. 48(3), 38:1–38:39 (2015)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  5. 5.
    Soper, D.: Is human mobility tracking a good idea? Commun. ACM 55(4), 35–37 (2012)CrossRefGoogle Scholar
  6. 6.
    Silveira, L.M., de Almeida, J.M., Marques-Neto, H.T., Sarraute, C., Ziviani, A.: Mobhet: predicting human mobility using heterogeneous data sources. Comput. Commun. 95, 54–68 (2016)CrossRefGoogle Scholar
  7. 7.
    Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.-L.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A Math. Theor. 41(22), 224015 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Simonite, T.: Mobile data: a gold mine for telcos. MIT Technology Review (2010)Google Scholar
  9. 9.
    Eagle, N., Pentland, A., Lazer, D.: Infering social network structure using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  10. 10.
    González, M.C., Barabási, A.-L.: Complex networks: from data to models. Nat. Phys. 3(4), 224–225 (2007)CrossRefGoogle Scholar
  11. 11.
    Asgari, F., Gauthier, V., Becker, M.: A survey on human mobility and its applications. arXiv preprint arXiv:1307.0814 (2013)
  12. 12.
    Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 186–194, ACM (2012)Google Scholar
  13. 13.
    Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015)CrossRefGoogle Scholar
  14. 14.
    Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. 106(51), 21484–21489 (2009)CrossRefGoogle Scholar
  15. 15.
    Brockmann, D., David, V., Gallardo, A.M.: Human mobility and spatial disease dynamics. Rev. Nonlinear Dyn. Complex. 2, 1–24 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jiang, S., Ferreira, J., Jr., Gonzalez, M.C.: Discovering urban spatial–temporal structure from human activity patterns. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp ’12, (New York, NY, USA), pp. 95–102, ACM (2012)Google Scholar
  17. 17.
    Sun, Y., Fan, H., Li, M., Zipf, A.: Identifying the city center using human travel flows generated from location-based social networking data. Environ. Plan. B Plan. Des. 43(3), 480–498 (2016)CrossRefGoogle Scholar
  18. 18.
    Toole, J.L., Ulm, M., González, M.C., Bauer, D.: Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, pp. 1–8, ACM (2012)Google Scholar
  19. 19.
    Bagrow, J.P., Wang, D., Barabasi, A.-L.: Collective response of human populations to large-scale emergencies. PLoS ONE 6(3), e17680 (2011)CrossRefGoogle Scholar
  20. 20.
    Sarraute, C., Brea, J., Burroni, J., Wehmuth, K., Ziviani, A., Alvarez Hamelin, J.I.: Social events in a time-varying mobile phone graph. In: Simposio Argentino de GRANdes DAtos (AGRANDA 2015)-JAIIO 44 (Rosario, 2015) (2015)Google Scholar
  21. 21.
    Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabsi, A.-L., Wang, D.: Scaling identity connects human mobility and social interactions. Proc. Natl. Acad. Sci. (PNAS) 113, 7047 (2016)CrossRefGoogle Scholar
  22. 22.
    Leo, Y., Busson, A., Sarraute, C., Fleury, E.: Call detail records to characterize usages and mobility events of phone users. Comput. Commun. 95, 43–53 (2016)CrossRefGoogle Scholar
  23. 23.
    Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in peoples lives from cellular network data. In: International Conference on Pervasive Computing, pp. 133–151, Springer (2011)Google Scholar
  24. 24.
    Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bleicher, A.: The on-demand olympics. IEEE Spectr. 49, 9–10 (2012)CrossRefGoogle Scholar
  26. 26.
    Calabrese, F., Ferrari, L., Blondel, V.D.: Urban sensing using mobile phone network data: a survey of research. ACM Comput. Surv. (CSUR) 47(2), 25 (2015)Google Scholar
  27. 27.
    Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Venkataraman, S., Wang, J.: A first look at cellular network performance during crowded events. In: ACM SIGMETRICS Performance Evaluation Review, vol. 41, pp. 17–28, ACM (2013)Google Scholar
  28. 28.
    Erman, J., Ramakrishnan, K.K.: Understanding the super-sized traffic of the super bowl. In Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 353–360, ACM (2013)Google Scholar
  29. 29.
    Small, C., Becker, R., Cáceres, R., Urbanek, S.: Earthquakes, hurricanes, and mobile communication patterns in the New York metro area: collective behavior during extreme events. arXiv preprint arXiv:1504.02463 (2015)
  30. 30.
    Xavier, F.H.Z., Silveira, L.M., Almeida, J.M.D., Ziviani, A., Malab, C.H.S., Marques-Neto, H.T.: Analyzing the workload dynamics of a mobile phone network in large scale events. In: Proceedings of the First Workshop on Urban Networking, pp. 37–42, ACM (2012)Google Scholar
  31. 31.
    Xavier, F.H.Z., Silveira, L., Almeida, J., Malab, C., Ziviani, A., Marques-Neto, H.T.: Understanding human mobility due to large-scale events. In: Third International Conference on the Analysis of Mobile Phone Datasets (NetMob) (2013)Google Scholar
  32. 32.
    Calabrese, F., Pereira, F.C., DiLorenzo, G., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: International Conference on Pervasive Computing, pp. 22–37 (2010)Google Scholar
  33. 33.
    Batty, M., DeSyllas, J., Duxbury, E.: The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades. Int. J. Geogr. Inf. Sci. 17(7), 673–697 (2003)CrossRefGoogle Scholar
  34. 34.
    Dong, Z.-B., Song, G.-J., Xie, K.-Q., Wang, J.-Y.: An experimental study of large-scale mobile social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1175–1176, ACM (2009)Google Scholar
  35. 35.
    Chang, Y.-J., Liu, H.-H., Chou, L.-D., Chen, Y.-W., Shin, H.-Y.: A general architecture of mobile social network services. In: International Conference on Convergence Information Technology, 2007, pp. 151–156, IEEE (2007)Google Scholar
  36. 36.
    Xu, Y., González, M.C.: Collective benefits in traffic during mega events via the use of information technologies. J. R. Soc. Interface 14, 2 (2017)Google Scholar
  37. 37.
    Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Gillespie, C.S.: Fitting heavy tailed distributions: the poweRlaw package. arXiv preprint (2014). arXiv:1407.3492
  39. 39.
    Xavier, W.Z., Marques-Neto, H.T., Xavier, F.H.Z.: Visualizing and analyzing georeferenced workloads of mobile networks. In: Workshop on Data Analytics for Mobile Networking - DAMN! in Conjuction with IEEE PerCom (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer SciencePUC MINASBelo HorizonteBrazil
  2. 2.Oi Telecom – Board for Special ProjectsRio de JaneiroBrazil
  3. 3.National Laboratory for Scientific Computing (LNCC)PetrópolisBrazil
  4. 4.Department of Computer ScienceUFMGBelo HorizonteBrazil

Personalised recommendations