Journal of Network and Systems Management

, Volume 23, Issue 3, pp 474–501 | Cite as

Recover Fault Services via Complex Service-to-Node Mappings in Wireless Sensor Networks

  • Qian LiEmail author
  • Wenjia Niu
  • Gang Li
  • Endong Tong
  • Yue Hu
  • Ping Liu
  • Li Guo


With the motivation of seamlessly extending wireless sensor networks to the external environment, service-oriented architecture comes up as a promising solution. However, as sensor nodes are failure prone, this consequently renders the whole wireless sensor network to seriously faulty. When a particular node is faulty, the service on it should be migrated into those substitute sensor nodes that are in a normal status. Currently, two kinds of approaches exist to identify the substitute sensor nodes: the most common approach is to prepare redundancy nodes, though the involved tasks such as maintaining redundancy nodes, i.e., relocating the new node, lead to an extra burden on the wireless sensor networks. More recently, other approaches without using redundancy nodes are emerging, and they merely select the substitute nodes in a sensor node’s perspective i.e., migrating the service of faulty node to it’s nearest sensor node, though usually neglecting the requirements of the application level. Even a few work consider the need of the application level, they perform at packets granularity and don’t fit well at service granularity. In this paper, we aim to remove these limitations in the wireless sensor network with the service-oriented architecture. Instead of deploying redundancy nodes, the proposed mechanism replaces the faulty sensor node with consideration of the similarity on the application level, as well as on the sensor level. On the application level, we apply the Bloom Filter for its high efficiency and low space costs. While on the sensor level, we design an objective solution via the coefficient of a variation as an evaluation for choosing the substitute on the sensor level.


WSN Faulty recovery Context awareness Knowledge granularity Bloom Filter 



This work was partially supported by the National Natural Science Foundation of China (No. 61103158), the Strategic Priority Research Program of the Chinese Academy of Sciences Grant (XDA06030200), the National High-Tech Research and Development Plan 863 of China (Grant No. 2011AA010703), the Securing CyberSpaces Research Cluster of Deakin University, Guangxi Key Laboratory of Trusted Software.


  1. 1.
    Iyengar, S.S., Brooks, R.R.: Distributed Sensor Networks: Sensor Networking and Applications, vol. 26. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  2. 2.
    Li, S., Xu, L., Wang, X., Wang, J.: Integration of hybrid wireless networks in cloud services oriented enterprise information systems. Enterp. Inf. Syst. 6(2), 165–187 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, G., Law, R., Rong, J., Vu, H.Q.: Incorporating both positive and negative association rules into the analysis of outbound tourism in Hong Kong. J. Travel Tour. Mark. 27(8), 812–828 (2010)CrossRefGoogle Scholar
  4. 4.
    Niu, W., Li, G., Zhao, Z., Tang, H., Shi, Z.: Multi-granularity context model for dynamic web service composition. J. Netw. Comput. Appl. 34(1), 312–326 (2011)CrossRefGoogle Scholar
  5. 5.
    Niu, W., Li, G., Tang, H., Zhou, X., Shi, Z.: CARSA: A context-aware reasoning-based service agent model for ai planning of web service composition. J. Netw. Comput. Appl. 34(5), 1757–1770 (2011)CrossRefGoogle Scholar
  6. 6.
    Su, Z., Timmermans, W.J., Tol, C., Dost, R., Bianchi, R., Gómez, J.A., House, A., Hajnsek, I., Menenti, M., Magliulo, V., Esposito, M., Haarbrink, R., Bosveld, F., Rothe, R., Baltink, H.K., Vekerdy, Z., Sobrino, J.A., Timmermans, J., Laake, P., Salama, S., Kwast, H., Claassen, E., Stolk, A., Jia, L., Moors, E., Hartogensis, O., Gillespie, A.: Eagle 2006—multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest. Hydrol. Earth Syst. Sci. 13, 833–845 (2009)Google Scholar
  7. 7.
    Folea, S., Neagu, M., Mois, G., Miclea, L.: Multi-purpose sensor platform development. In: 2012 IEEE International Conference on Automation Quality and Testing Robotics (AQTR), pp. 341–346. IEEE (2012)Google Scholar
  8. 8.
    Song, G., Gu, H., Mo, Y.L.: Smart aggregates: multi-functional sensors for concrete structuresa tutorial and a review. Smart Mater. Struct. 17, 033001 (2008)CrossRefGoogle Scholar
  9. 9.
    Qian, Y., Lu, K., Tipper, D.: A design for secure and survivable wireless sensor networks. Wirel. Commun. IEEE 14(5), 30–37 (2007)CrossRefGoogle Scholar
  10. 10.
    Xu, K., Howitt, I.: Realistic energy model based energy balanced optimization for low rate WPAN network. In: Southeastcon, 2009, SOUTHEASTCON’09, IEEE, pp. 261–266. IEEE (2009)Google Scholar
  11. 11.
    Xu, K., Tipmongkonsilp, S., Tipper, D., Qian, Y., Krishnamurthy, P.: A time dependent performance model for multi-hop wireless networks with CBR traffic. In: 29th IEEE International Performance Computing and Communications Conference (IPCCC’10), pp. 271–280. IEEE (2010)Google Scholar
  12. 12.
    Samina, E., Bechir, H.: A survey on energy-efficient routing techniques with QOS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 14(2), 265–278 (2012)CrossRefGoogle Scholar
  13. 13.
    Xu, K., Zhou, M.: Energy balanced chain in IEEE 802.15. 4 low rate WPAN. In: 2013 International Conference on Computing, Networking and Communications (ICNC), pp. 1010–1015. IEEE (2013)Google Scholar
  14. 14.
    Van Steen, M.: Distributed systems principles and paradigms. Network 3, 26 (2003)Google Scholar
  15. 15.
    Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)CrossRefGoogle Scholar
  16. 16.
    Xu, K., Tipper, D., Krishnamurthy, P., Qian, Y.: An efficient hybrid model and dynamic performance analysis for multihop wireless networks. In: 2013 International Conference on Computing, Networking and Communications (ICNC), pp. 1090–1096. IEEE (2013)Google Scholar
  17. 17.
    Kim, S., Rodrigo, F., David, C.: Reliable transfer on wireless sensor networks. In: The First IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON 2004), pp. 449–459. IEEE (2004)Google Scholar
  18. 18.
    Wang, Y., Wu, H.: Delay/fault-tolerant mobile sensor network (DFT-MSN): a new paradigm for pervasive information gathering. IEEE Trans. Mobile Comput. 6(9), 1021–1034 (2007)CrossRefGoogle Scholar
  19. 19.
    Janidarmian, M., Zilic, Z., Radecka, K.: Issues in multi-valued multi-modal sensor fusion. In: 2012 42nd IEEE International Symposium on Multiple-Valued Logic (ISMVL), pp. 238–243. IEEE (2012)Google Scholar
  20. 20.
    Araújo, F., Rodrigues, L.: On the monitoring period for fault-tolerant sensor networks. In: Dependable Computing, pp. 174–190 (2005)Google Scholar
  21. 21.
    Cerpa, A., Estrin, D.: ASCENT: Adaptive self-configuring sensor networks topologies. IEEE Trans. Mobile Comput. 3(3), 272–285 (2004)CrossRefGoogle Scholar
  22. 22.
    Sharma, A., Wadhwa, Y., Aggarwal, A.: Routing and computing in wireless sensor networks. Int. J. 3(1), 336–339 (2013)Google Scholar
  23. 23.
    Oyman, E., Ersoy, C.: Multiple sink network design problem in large scale wireless sensor networks. In: 2004 IEEE International Conference on Communications, vol. 6, pp. 3663–3667. IEEE, (2004)Google Scholar
  24. 24.
    Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485–509 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lovie P. (2005) Coefficient of variation. Encyclopedia of Statistics in Behavioral ScienceGoogle Scholar
  26. 26.
    Ell, K.: Coefficient of variation. Environ. Asp. Trace Elem. Coal 2, 112 (1995)Google Scholar
  27. 27.
    Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks. Netw. Syst. Manag. 15(2), 171–190 (2007)CrossRefGoogle Scholar
  28. 28.
    Huangshui, H., Guihe, Q.: Fault management frameworks in wireless sensor networks. In: 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2, pp. 1093–1096. IEEE (2011)Google Scholar
  29. 29.
    Asim, M., Mokhtar, H., Merabti, M.: A self-managing fault management mechanism for wireless sensor networks. ArXiv preprint arXiv:1011.5072 (2010)Google Scholar
  30. 30.
    Wan, C.-Y., Eisenman, S.B., Campbell, A.T.: CODA: Congestion detection and avoidance in sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 266–279. ACM (2003)Google Scholar
  31. 31.
    Rajendran, V., Obraczka, K., Yi, Y., Lee, S.-J., Tang, K., Gerla, M.: Combining source-and localized recovery to achieve reliable multicast in multi-hop ad hoc networks. In: NETWORKING 2004. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications, pp. 112–124. Springer (2004)Google Scholar
  32. 32.
    Han, Q., Lazaridis, I., Mehrotra, S., Venkatasubramanian, N.: Sensor data collection with expected reliability guarantees. In: Third IEEE International Conference on Pervasive Computing and Communications Workshops, 2005. PerCom 2005 Workshops, pp. 374–378. IEEE (2005)Google Scholar
  33. 33.
    Chessa, S., Maestrini, P.: Fault recovery mechanism in single-hop sensor networks. Comput. Commun. 28(17), 1877–1886 (2005)CrossRefGoogle Scholar
  34. 34.
    Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentell, A.: Fault tolerance techniques for wireless ad hoc sensor networks. In: Proceedings of the First IEEE International Conference on Sensors, vol. 2, pp. 1491–1496. IEEE (2002)Google Scholar
  35. 35.
    Parikh, S., Vokkarane, V.M., Xing, L., Kasilingam, D.: Node-replacement policies to maintain threshold-coverage in wireless sensor networks. In: Proceedings of 16th International Conference on Computer Communications and Networks (ICCCN 2007), pp. 760–765. IEEE (2007)Google Scholar
  36. 36.
    Dibley, M., Li, H., Yacine, R., Miles, J.: Cost effective and scalable sensor network for intelligent building monitoring. Int. J. Innov. Comput. Inf. Control 8, 12 (2012)Google Scholar
  37. 37.
    Younis, O., Fahmy, S.: HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mobile Comput. 3(4), 366–379 (2004)CrossRefGoogle Scholar
  38. 38.
    Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false data in sensor networks. In: Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2446–2457. IEEE (2004)Google Scholar
  39. 39.
    Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better bloom filter. Algorithms–ESA 2006, pp. 456–467 (2006)Google Scholar
  40. 40.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, Los Altos (2006)Google Scholar
  41. 41.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  42. 42.
    Murillo, A.F., Pena, M., Martínez, D.: Applications of WSN in health and agriculture. In: 2012 IEEE Colombian Communications Conference (COLCOM), pp. 1–6. IEEE (2012)Google Scholar
  43. 43.
    Bhavsar, A.R., Shah, D.J., Arolkar, H.A.: Distributed data storage model for cattle health monitoring using WSN. Adv. Comput. Sci. Int. J. 2(2), 19–24 (2013)Google Scholar
  44. 44.
    Potyrailo, R.A., Nagraj, N., Surman, C., Boudries, H., Lai, H., Slocik, J.M., Kelley-Loughnane, N. Naik, R.R.: Wireless sensors and sensor networks for homeland security applications. TrAC Trends Anal. Chem. 40, 133–145 (2012)Google Scholar
  45. 45.
    Viani, F., Rocca, P., Oliveri, G., Massa, A.: Pervasive remote sensing through WSNs. In: 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 49–50. IEEE (2012)Google Scholar
  46. 46.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, pp. 10–pp. IEEE (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qian Li
    • 1
    Email author
  • Wenjia Niu
    • 1
  • Gang Li
    • 2
  • Endong Tong
    • 3
  • Yue Hu
    • 1
  • Ping Liu
    • 1
  • Li Guo
    • 1
  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Information TechnologyDeakin UniversityGeelongAustralia
  3. 3.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations