Journal of Network and Systems Management

, Volume 22, Issue 3, pp 302–330 | Cite as

Managed Semantic Interoperability for Federations

  • Rob Brennan
  • Brian Walshe
  • Declan O’Sullivan


Semantic interoperability is a fundamental service in any dynamic federation that admits diverse autonomous members with heterogeneous data or service description schemata. Managing such schema diversity promotes and enables communication and collaboration within these federations. This paper presents a process, model and algorithms to manage the lifecycle, refinement and dynamic combination of semantic mappings using federation context and automated correspondence pattern recognition for complex mappings. Related work is surveyed, key requirements are derived and the system is evaluated through prototyping and experimental results for semi-automated generation of executable groundings for complex mappings.


Mapping Data and service management Interoperability 



This research is supported by the Science Foundation Ireland (Grant 08/SRC/I1403) as part of the FAME Strategic Research Cluster (


  1. 1.
    Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards dataset dynamics: change frequency of linked open data sources. In: Proceedings of the Linked Data on the Web Workshop (LDOW2010), Raleigh, North Carolina, USA, 27 Apr 2010Google Scholar
  2. 2.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013). doi: 10.1109/TKDE.2011.253 CrossRefGoogle Scholar
  3. 3.
    Thomas, H., O’Sullivan, D., Brennan, R.: Ontology mapping representations: a pragmatic evaluation. In: Proceedings of 21st International Conference on Software Engineering and Knowledge Engineering (SEKE), Boston, pp. 228–232, 2009Google Scholar
  4. 4.
    Euzenat, J., Scharffe, F., Zimmermann, A.: Expressive alignment language and implementation. Deliverable 2.2.10, Knowledge Web NoE, 2007Google Scholar
  5. 5.
    O’Sullivan, D., Wade, V., Lewis, D.: Understanding as we roam. IEEE Internet Comput. 11(2), 26–33 (2007). doi: 10.1109/MIC.2007.50 CrossRefGoogle Scholar
  6. 6.
    Moser, T., et al.: Semantic service matchmaking in the ATM domain considering infrastructure capability constraints. In: Proceedings of 21st International Conference on Software Engineering & Knowledge Engineering, SEKE 2009, 1–3.06, Boston, pp. 222–227, 2009Google Scholar
  7. 7.
    Weidman, S., Arrison, T.: Steps toward large-scale data integration in the sciences. ISBN: 0-309-15443-X, 2010Google Scholar
  8. 8.
    Jennings, B., Brennan, R., Donnelly, W., et al.: Challenges for federated, autonomic network management in the future Internet. In: 1st IFIP/IEEE International Workshop on Management of the Future Internet, New York, 5 June 2009, IEEE, 2009Google Scholar
  9. 9.
    Yang, K., Steele, R.: A framework for ontology mapping for the semantic web. In: Proceedings of the International Conference on Information Technology in Asia,, 2007
  10. 10.
    Alexander, K., et al.: Describing Linked Datasets, LDOW2009, 20 Apr, Madrid, Spain, 2009Google Scholar
  11. 11.
    Millard, I., Glaser, H., Salvadores, M., Shadbolt, N.: Consuming multiple linked data sources: challenges and experiences. In: First International Workshop on Consuming Linked Data (COLD2010), Shanghai, 2010Google Scholar
  12. 12.
    Feeney, K., Brennan, R., Keeney, J., Thomas, H., Lewis, D., Boran, A., O’Sullivan, D.: Enabling decentralised management through federation. Comput. Netw. 54(16), 2825–2839 (2010)CrossRefGoogle Scholar
  13. 13.
    Scharffe, F., Fensel, D.: Correspondence patterns for ontology alignment. In: Gangemi, A., Euzenat, J. (eds.) Knowledge Engineering: Practice and Patterns. Lecture Notes in Computer Science, vol. 5268, pp. 83–92 (2008)Google Scholar
  14. 14.
    L′opez de Vergara, J.E., Guerrero, A., Villagr′a, V.A., Berrocal, J.: Ontology-based network management: study cases and lessons learned. J. Net. Sys. Man. 17(3), 234–254 (2009). Sp. Iss.: Ontological Approaches for Net. and Serv. Man.Google Scholar
  15. 15.
    Strassner, J., Neumann de Souza, J., van der Meer, S., Davy, S., Barrett, K., Raymer, D., Samudrala, S.: The design of a new policy model to support ontology-driven reasoning for autonomic networking. J. Net. Sys. Man. 17(1–2), 5–32 (2009)Google Scholar
  16. 16.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. J. Data Semant. Long version in DIT Technical Report, DIT-04-87, 2004Google Scholar
  17. 17.
    Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: Observer: an approach for query processing in global information systems based on interoperation across pre-existing ontologies. Distrib. Parallel Databases 8(2), 223–271 (2000)CrossRefGoogle Scholar
  18. 18.
    Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology based integration of information—a survey of existing approaches. In: Proceedings of the IJCAI Workshop on Ontologies and Information Sharing, pp. 108–117, 2001Google Scholar
  19. 19.
    Bockting, S.: A semantic translation service using ontologies advances in web-age information management. In: Lecture Notes in Computer Science, vol. 3129/2004, pp. 249–258, 2004Google Scholar
  20. 20.
    Jain, H., Zhao, H.: Federating heterogeneous information systems using web services and ontologies. In: AMCIS 2004 Proceedings, 2004Google Scholar
  21. 21.
    Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement partner selection. In: Proceedings of the 15th International Conference on World Wide Web (WWW ‘06), pp. 697–706. ACM, New York, NY, USA, doi: 10.1145/1135777.1135879
  22. 22.
    Doran, P., Tamma, V., Payne, T., Palmisano, I.: Dynamic selection of ontological alignments: a space reduction mechanism. In: Proceedings of IJCAI’2009, pp. 2028–2033, 2009Google Scholar
  23. 23.
    Cudré-Mauroux, P.: Emergent semantics: rethinking interoperability for large scale decentralized information systems. In: Self-Organizing Knowledge Systems Symposium, VU Amsterdam, 29 Apr 2010Google Scholar
  24. 24.
    Giunchiglia, F., Autayeu, A., Pane, J.: S-Match: an open source framework for matching lightweight ontologies. Compute 1, 1–9 (2010)Google Scholar
  25. 25.
    Miller, G.A.: WordNet: a lexical Database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  26. 26.
    Fagin, R., Haas, L.M., Hern, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: schema mapping creation and data exchange. Concept. Model. Found. Appl. 5600(2009), 198–236 (2009)CrossRefGoogle Scholar
  27. 27.
    David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)Google Scholar
  28. 28.
    Ritze, D., Meilicke, C., Sváb-Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences. In: Proceedings of international workshop on ontology matching (OM), 2009Google Scholar
  29. 29.
    Euzenat, J., et al.: Final results of the ontology alignment evaluation initiative 2011. In: ISWC workshop on Ontology Matching, 2011Google Scholar
  30. 30.
    Brennan, R., Feeney, K., Walshe, B., Thomas, H., O’Sullivan, D.: Explicit federal relationship management to support semantic integration. In: 1st IFIP/IEEE Workshop on Managing Federations and Cooperative Management, Dublin, 23 May 2011, IEEE, 2011, pp. 1148–1156Google Scholar
  31. 31.
    Walshe, B., Brennan, R., O’Sullivan, D.: Correspondence pattern attribute selection for consumption of federated data sources. IFIP/IEEE DANMS 2012, Hawaii, 16 Apr 2012Google Scholar
  32. 32.
    Thomas, H., Brennan, R., O’Sullivan, D.: MooM—a prototype framework for management of ontology mappings. In: Tan, H., Taniar, D., Uehara, M. (eds.) 25th IEEE International Conference on Advanced Information Networking and Applications, Singapore, 22–25 Mar 2011. IEEE, pp. 548–555 (2011)Google Scholar
  33. 33.
    Feeney, K., Foley, S.N., Brennan, R.: A trust model for capability delegation in federated policy systems. In: Sixth International Conference on Risks and Security of Internet and Systems, Timioara, Romania, 26–28 Sept 2011, pp. 47–54Google Scholar
  34. 34.
    MacKay, D.: Information Theory, Inference, and Learning Algorithms, pp. 32–35. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  35. 35.
    Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: ICML ‘97 Proceedings of the Fourteenth International Conference on Machine Learning, pp 412–420, 1997Google Scholar
  36. 36.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman (1993)Google Scholar
  37. 37.
    Bizer, C., et al.: DBpedia—A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web, no. 7, pp. 154–165, Sept 2009Google Scholar
  38. 38.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a large ontology from wikipedia and wordnet. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 203–217 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rob Brennan
    • 1
  • Brian Walshe
    • 1
  • Declan O’Sullivan
    • 1
  1. 1.FAME and Knowledge and Data Engineering Group, School of Computer Science and Statistics, O’Reilly InstituteTrinity CollegeDublin 2Ireland

Personalised recommendations