Journal of Network and Systems Management

, Volume 21, Issue 4, pp 650–676 | Cite as

Federation Lifecycle Management Incorporating Coordination of Bio-inspired Self-management Processes

  • Brian Meskill
  • Sasitharan Balasubramaniam
  • Rob Brennan
  • Kevin Feeney
  • Brendan Jennings
Article

Abstract

As it has evolved, the Internet has had to support a broadening range of networking technologies, business models and user interaction modes. Researchers and industry practitioners have realised that this trend necessitates a fundamental rethinking of approaches to network and service management. This has spurred significant research efforts towards developing autonomic network management solutions incorporating distributed self-management processes inspired by biological systems. Whilst significant advances have been made, most solutions focus on management of single network domains and the optimisation of specific management or control processes therein. In this paper we argue that a networking infrastructure providing a myriad of loosely coupled services must inherently support federation of network domains and facilitate coordination of the operation of various management processes for mutual benefit. To this end, we outline a framework for federated management that facilitates the coordination of the behaviour of bio-inspired management processes. Using a case study relating to distribution of IPTV content, we describe how Federal Relationship Managers realising our layered model of management federations can communicate to manage service provision across multiple application/storage/network providers. We outline an illustrative example in which storage providers are dynamically added to a federation to accommodate demand spikes, with appropriate content being migrated to those providers servers under control of a bio-inspired replication process.

Keywords

Network management Federation Bio-inspired processes IPTV content distribution 

Notes

Acknowledgments

This work has been funded by Science Foundation Ireland via the “FAME” Strategic Research Cluster, grant no. 08/SRC/I1403.

References

  1. 1.
    Paul, S., Pan, J., Jain, R.: Architectures for the future networks and the next generation internet: a survey. Comput. Commun. 34(1), 2–42 (2011)CrossRefGoogle Scholar
  2. 2.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1, 223–259 (2006)CrossRefGoogle Scholar
  4. 4.
    Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., May, M.: The Autonomic Network Architecture (ANA). IEEE J. Sel. Areas Commun. 28(1), 4–14 (2010)CrossRefGoogle Scholar
  5. 5.
    Gogineni, H., Greenberg, A., Maltz, D., Ng, T., Yan, H., Zhang, H.: Mms: an autonomic network-layer foundation for network management. IEEE J. Sel. Areas Commun. 28(1), 15–27 (2010)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Nakao, A.: On socially-inspired cooperative and efficient overlay network evolution based on group selection pattern. In: Proceedings of the 3rd International Conference on Bio-inspired Models of Network, Information and Computing Sytems (Bionetics 2008), Article No. 21 (2008)Google Scholar
  7. 7.
    Wang, Y., Nakao, A.: On cooperative and efficient overlay network evolution based on a group selection pattern. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 493–504 (2010)CrossRefGoogle Scholar
  8. 8.
    Dressler, F., Akan, O.: Bio-inspired networking: from theory to practice. IEEE Commun. Mag. 48(11), 176–183 (2010)CrossRefGoogle Scholar
  9. 9.
    Nakano, T.: Biologically inspired network systems: a review and future prospects. IEEE Trans. Syst. Man Cybern. 41(5), 630–643 (2011)CrossRefGoogle Scholar
  10. 10.
    Meisel, M., Pappas, V., Zhang, L.: A taxonomy of biologically inspired research in computer networking. Comput. Netw. 54(6), 901–916 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Jennings, B., Feeney, K., Brennan, R., Balasubramaniam, S., Botvich, D., van der Meer, S.: Autonomic network management principles. In: Agoulmine, N., Won-Ki Hong, J. (eds.) Federating Autonomic Network Management Systems for Flexible Control of End-to-End Communications Services, pp. 101–118.Elsevier, Amsterdam (2010)Google Scholar
  12. 12.
    Balasubramaniam, S., Botvich, D., Jennings, B., Davy, S., Donnelly, W., Strassner, J.: Policy-constrained bio-inspired processes for autonomic route management. Comput. Netw. 53(10), 1666–1682 (2009)CrossRefMATHGoogle Scholar
  13. 13.
  14. 14.
    Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Meskill, B., Davy, A., Jennings, B.: Server selection and admission control for ip-based video on demand using available bandwidth estimation. In: Proceedings of the 36th IEEE Conference on Local Computer Networks (LCN 2011), pp. 255–258 (Oct 2011)Google Scholar
  16. 16.
    Meskill, B., Davy, A., Jennings, B.: Revenue-maximizing server selection and admission control for IPTV content servers using available bandwidth estimates. In: Proceedings of the 2012 IEEE/IFIP Network and Operations Management Symposium (NOMS 2012), pp. 319–326. IEEE (2012)Google Scholar
  17. 17.
    Suzuki, J., Suda, T.: A middleware platform for a biologically-inspired network architecture supporting autonomous and adaptive applications. IEEE J. Sel. Areas Commun. 23(2), 249–260 (2005)CrossRefGoogle Scholar
  18. 18.
    Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)MATHGoogle Scholar
  19. 19.
    Ahn, C.W., Ramakrishna, R. S.: A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans. Evol. Comput. 6(6), 566–579 (2002)CrossRefGoogle Scholar
  20. 20.
    Leibnitz, K., Wakamiya, N., Murata, M.: Biologically inspired self-adaptive multi-path routing in overlay networks. Commun. ACM 49(3), 62–67 (2006)CrossRefGoogle Scholar
  21. 21.
    Cabellos-Aparicio, A., Garcia, F., Domingo-Pascual, J.: A novel available bandwidth estimation and tracking algorithm. In: Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), pp. 87–94 (2008)Google Scholar
  22. 22.
    Jain, M., Dovrolis, C.: Pathload: a measurement tool for end-to-end available bandwidth. In: Proceedings of Passive and Active Measurements Workshop, pp. 14–25 (2002)Google Scholar
  23. 23.
    Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth estimation tools. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 39–44 (2003)Google Scholar
  24. 24.
    Goldoni, E., Rossi, G., Torelli, A.: Assolo, a new method for available bandwidth estimation. In: Proceedings of International Conference on Internet Monitoring and Protection, pp. 130–136 (2009)Google Scholar
  25. 25.
    Sommers, J., Barford, P., Willinger, W.: A proposed framework for calibration of available bandwidth estimation tools. In: Proceedings of 11th IEEE Symposium on Computers and Communications (ISCC 2006), pp. 709–718 (2006)Google Scholar
  26. 26.
    Ekelin, S., Nilsson, M., Hartikainen, E., Johnsson, A., Mangs, J.-E., Melander, B., Bjorkman, M.: Real-time measurement of end-to-end available bandwidth using kalman filtering. In: Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS 2006), pp. 73–84 (2006)Google Scholar
  27. 27.
    Ribeiro, V. J., Riedi, R. H., Baraniuk, R. G., Navratil, J., Cottrell, L.: Pathchirp: efficient available bandwidth estimation for network paths. In: Passive and Active Measurement Workshop (2003)Google Scholar
  28. 28.
    Latré, S., De Vleeschauwer, B., Van de Meerssche, W., Perrault, S., De Turck, F., Demeester, P., De Schepper, K., Hublet, C., Rogiest, W., Custers, S., Van Leekwijck, W.: An autonomic pcn based admission control mechanism for video services in access networks. IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)—Workshops, pp. 161–168 (2009)Google Scholar
  29. 29.
    Pre-Congestion Notification (PCN) architecture IETF RFC 5559. [Online]. Available: http://www.ietf.org/rfc/rfc5559.txt
  30. 30.
    Asghar, J., Le Faucheur, F., Hood, I.: Preserving video quality in iptv networks. IEEE Trans. Broadcast. 55(2), 386–395 (2009)CrossRefGoogle Scholar
  31. 31.
    Resource ReSerVation Protocol (RSVP) version 1 functional specification, IETF RFC 2205. [Online]. Available: http://www.ietf.org/rfc/rfc2205.txt
  32. 32.
    Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments. Comput. Netw. 35(1), 5–24 (2001)CrossRefGoogle Scholar
  33. 33.
    Nurmela, T., Kutvonen, L.: Service level agreement management in federated virtual organizations. In: Distributed Applications and Interoperable Systems, ser. LNCS 4531, pp. 62–75 (2007)Google Scholar
  34. 34.
    Keller, A., Ludwig, H., Kar, G., Dan, A., Hellerstein, J.L.: Managing dynamic services: a contracts-based approach to a conceptual architecture. In: Proceedings of 2002 IEEE/IFIP Network Operations and Management Symposium (NOMS 2002), pp. 513–528 (2002)Google Scholar
  35. 35.
    Grefen, P.J., Aberer, K., Ludwig, H., Hoffner, Y.: Crossflow: cross-organizational workflow management for service outsourcing in dynamic virtual enterprises. IEEE Data Eng. Bull. 24(1), 52–57 (2001)Google Scholar
  36. 36.
    Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs—an approach for a generic negotiation framework for WS-Agreement. J. Grid Comput. 7(2), 225–246 (2009)CrossRefGoogle Scholar
  37. 37.
    Zieba, J., Kryza, B., Slota, R., Dutka, L., Kitowski, J.: Ontology alignment for contract based virtual organizations negotiation and operation. In: Proceedings of International Conference on Parallel Processing and Applied Mathematics, no. LNCS 4967, pp. 835–843 (2007)Google Scholar
  38. 38.
    El-Kalam, A. A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: Proceedings of 4th IEEE International Workshop on Policies for Distributed Systems and Networks. IEEE, pp. 120–131 (2003)Google Scholar
  39. 39.
    Bhatti, R., Bertino, E., Ghafoor, A.: X-FEDERATE: a policy engineering framework for federated access management. IEEE Trans. Softw. Eng. 32(2), 330–346 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Brian Meskill
    • 1
  • Sasitharan Balasubramaniam
    • 1
  • Rob Brennan
    • 2
  • Kevin Feeney
    • 2
  • Brendan Jennings
    • 1
  1. 1.TSSG, Waterford Institute of TechnologyWaterfordIreland
  2. 2.KDEG, School of Computer Science and StatisticsTrinity College DublinDublin 2Ireland

Personalised recommendations