Advertisement

Journal of Network and Systems Management

, Volume 21, Issue 3, pp 474–509 | Cite as

QoSPlan: A Measurement Based Quality of Service aware Network Planning Framework

  • Alan Davy
  • Brendan Jennings
  • Dmitri Botvich
Article

Abstract

In this article we present QoSPlan—a measurement based framework for preparing information relevant to Quality of Service (QoS)-aware IP network planning, which aims at reducing a core operational expenditure for the network operator. QoSPlan is designed to reduce the cost of deployment and maintenance of network monitoring systems. The process involves analysis of pre-existing accounting data to estimate a network-wide traffic matrix. Part of this estimation process relates to the generalization of QoS-related effective bandwidth coefficients taken from traffic analyzed on the network. We offer recommendations on how to appropriately realize QoSPlan to maximize its accuracy and effectiveness when applied to different network traffic scenarios. This is achieved through a thorough sensitivity analysis of the methods proposed using real traffic scenarios and indicative network topologies. We also provide an economic analysis of the deployment and maintenance costs associated with QoSPlan in comparison to a direct measurement approach, demonstrating cost savings of up to 60 % given different topology sizes.

Keywords

Provisioning Effective bandwidth Traffic matrix 

Notes

Acknowledgments

This work has received support from Science Foundation Ireland via grant numbers 03/CE3/I405 (Autonomic Management of Communications Networks and Services) and 08/SRC/I1403 (Federated, Autonomic Management of End-to-End Communications Services) and the Irish Research Council for Science, Engineering and Technology, co-funded by Marie Curie Actions under FP7.

References

  1. 1.
    Davy, A., Botvich, D., Jennings, B.: An efficient process for estimation of network demand for QoS-aware IP networking planning. In: Proceedings of 6th IEEE International Workshop on IP Operations and Management, IPOM, vol. LNCS 4268. Springer, Berlin, pp. 120–131 (2006)Google Scholar
  2. 2.
    Davy, A., Botvich, D., Jennings, B.: On the use of accounting data for QoS-Aware IP network planning. In: Mason L., and Drwiega T. (eds.) Proceedings of 20th International Teletraffic Congress (ITC-20), vol. LNCS 4516. Springer Berlin, pp. 348–360 (2007)Google Scholar
  3. 3.
    Kelly, F.P., Zachary, S., Zeidins, I. (eds): Notes on Effective Bandwidth, vol. 4. Oxford University Press, Oxford (1996)Google Scholar
  4. 4.
    Davy, A., Jennings, B., Botvich, D.: QoSPlan: process for QoS-Aware IP network planning using accounting data and effective bandwidth estimation. In: Proceedings of 2007 IEEE Global Telecommunications Conference (GLOBECOM), pp. 2690–2695 (2007)Google Scholar
  5. 5.
    Awduche, D., Malcolm, J., Agogbua, J., O’Dell, J., McManus, J.: Requirements for traffic engineering over MPLS. IETF Network Working Group RFC 2702, 1999, available: 08-10-2008, online at: http://www.ietf.org/rfc/rfc2702.txt
  6. 6.
    Botvich D., Duffield, N.: Large deviations, the shape of the loss curve, and economies of scale in large multiplexers. Queueing Syst. 20(3), 293–320 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Simonian, A., Guibert, J.: Large deviations approximation for fluid queues fed by a large number of on/off sources. IEEE J. Sel. Areas Commun. 13(6), 1017–1027 (1995)CrossRefGoogle Scholar
  8. 8.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). In: IEEE/ACM Transactions on Networking, vol. 2, no. 1. IEEE Press, Piscataway, NJ (1994), pp. 1–15Google Scholar
  9. 9.
    Mansfield, G., Roy, T., Shiratori, N.: Self-Similar and fractal nature of Internet traffic data. In Proceedings of the 15th International Conference on Information Networking (ICOIN), pp. 227–231 (2001)Google Scholar
  10. 10.
    Gong, W.-B., Liu, Y., Misra, V., Towsley, D.: Self-similarity and long range dependence on the Internet: a second look at the evidence, origins and implications. Comput. Netw. 48(3), 377–399 (2005)CrossRefGoogle Scholar
  11. 11.
    Gibbens R. (1996) Traffic characterisation and effective bandwidths for broadband network traces. In: Kelly, F.P., Zachary, S., Ziedins, I.B. (eds) Stochastic Networks: Theory and Applications, Royal Statistical Society Lecture Note Series 4. Oxford University Press, pp. 169–179Google Scholar
  12. 12.
    Duffield, N., Lewis, J.T., O’Connell, N., Toomey, F.: Entropy of ATM traffic streams: a tool for estimating QoS parameters. IEEE J. Sel. Areas Commun. 13(6), 981–990 (1995)CrossRefGoogle Scholar
  13. 13.
    Guérin, R., Ahmadi, H., Naghshineh, M.: Equivalent capacity and its application to bandwidth allocation in high-speed networks. IEEE J. Sel. Areas Commun. 9(7), 968–981 (1991)CrossRefGoogle Scholar
  14. 14.
    Liu N.X. and Baras, J.S.: Measurement and simulation based effective bandwidth estimation. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), vol. 4, pp. 2108–2112 (2004)Google Scholar
  15. 15.
    Davy, A., Botvich, D., Jennings, B.: Revenue optimized IPTV admission control using empirical effective bandwidth estimation. IEEE Trans. Broadcast. 54(3 part 2), 599–611 (2008)CrossRefGoogle Scholar
  16. 16.
    Medina, A., Fraleigh, C., Taft, N., Battacharryya, S., Diot, C. A taxonomy of IP traffic matrices. In: SPIE Proceedings Series, pp. 200–213 (2002)Google Scholar
  17. 17.
    Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.: Deriving traffic demands for operational IP networks: methodology and experience. IEEE/ACM Trans. Netw. 9(3), 265–279 (2001)CrossRefGoogle Scholar
  18. 18.
    Papagiannaki, K., Taft, N., Lakhina, A.: A distributed approach to measure IP traffic matrices. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, (2004), pp. 161–174Google Scholar
  19. 19.
    Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream database for network applications. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of data, ser. SIGMOD ’03. ACM, New York, NY (2003), pp. 647–651. [Online]. doi: 10.1145/872757.872838
  20. 20.
    Zhang, Y., Roughan, M., Willinger, W., Qiu, L.: Spatio-temporal compressive sensing and internet traffic matrices. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data communication, ser. SIGCOMM ’09. plus 0.5em minus 0.4em. ACM, New York, NY, (2009), pp. 267–278. [Online]. doi: 10.1145/1592568.1592600
  21. 21.
    Sadasivan, G., Brownlee, N., Claise, B., Quittek, J.: Architecture for IP flow information export. IETF IP flow information export WG—internet-draft, 2006, available: 08-10-2008, online at: http://www.ietf.org/internet-drafts/drafts-ietf-ipfix-architecture-12.txt
  22. 22.
    MOME: IST MOME—Cluster of European Projects aimed at Monitoring and Measurement, 2008, available: 08-10-2008, online at: http://www.ist-mome.org/database. [Online]. Available: http://www.ist-mome.org/database
  23. 23.
    Claise, B.: Cisco Systems NetFlow Service Export Version 9. IETF Network Working Group RFC 3954, (2004), available: 08-10-2008, online at: http://www.ietf.org/rfc/rfc3954.txt
  24. 24.
    Farinacci, D., Fuller, V., Meyer, D., Lewis, D.: Locator/id separation protocol (lisp). IETF Network Working Group Internet Draft, February 2012Google Scholar
  25. 25.
    OPNET: Discrete event smulation model library. OPNET Modeler™, 2011. [Online]. Available:http://www.opnet.com/
  26. 26.
    GÉANT: 2012, available: 01-02-2012, online:http://www.geanet.net/
  27. 27.
    Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public interdomain traffic matrices to the research community. ACM SIGCOMM Comput. Commun. Rev. 36(1), 83–86 (2006)CrossRefGoogle Scholar
  28. 28.
    CAIDA: CAIDA Anonymized 2012 Internet Traces dataset. 2012, available: 01-02-2012, online at:https://data.caida.org/datasets/passive-2012/
  29. 29.
    Grabani J.-P., Mendel T. (2008) Market Overview: The IT Management Software Market In 2008. Forrester Research, Inc.Google Scholar
  30. 30.
    HEANET, Higher Education Authority Network: available: 08-10-2008, online: http://www.heanet.ie/ (2008)
  31. 31.
    Network Instruments: 10/100/1000 Ethernet Probes, (2008) available: 01-10-08, online:http://www.networkinstruments.com/products/probes/

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Telecommunications Software & Systems Group, Waterford Institute of TechnologyWaterfordIreland

Personalised recommendations