Journal of Network and Systems Management

, Volume 20, Issue 3, pp 401–416 | Cite as

Network Performance Improvement of All-Optical Networks Through an Algorithmic Based Dispersion Management Technique

  • Nadiatulhuda Zulkifli
  • Sevia. M. Idrus
  • Abu Sahmah M. Supa’at
  • M. A. Farabi


Network blocking performance due to wavelength continuity constraint in a well-connected all-optical network can be efficiently reduced by utilizing wavelength converters. Nevertheless, the introduction of high bit rate optical services with strict tolerance to signal quality would have a serious impact on the overall network performance since in this circumstance, a request can be blocked due to unacceptable signal quality of potential routes. Chromatic dispersion tolerance, for example, is reduced by the square of the bit rate. By extending the typical application of parametric wavelength converter in solving a wavelength continuity problem, this paper aims to enhance chromatic dispersion management through an improved wavelength conversion algorithm. Consequently, significant improvement in network performance has been demonstrated through reduction in the dispersion effect when the proposed engineering rule is included in the conversion process.


Chromatic dispersion management Parametric wavelength conversion Routing and wavelength assignment algorithms 



The authors acknowledge the administration of Universiti Teknologi Malaysia (UTM) especially Research Management Centre (RMC) for the financial support through Grant with vote number 03J55.


  1. 1.
    Zhang, H., Jue, J.P., Mukherjee, B.: A review of RWA approaches for wavelength routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)Google Scholar
  2. 2.
    Yoo, S.J.B.: Wavelength conversion technologies for WDM network applications. J. Lightwave Tech. 14(6), 955–966 (1996)CrossRefGoogle Scholar
  3. 3.
    Yamawaku, J., Takara, H., Ohara, T., Takada, J., Morioka, T., Tadanaga, O., Miyazawa, H., Asobe, M.: Low-crosstalk 103 channel x 10 Gb/s (1.03 Tb/s) wavelength conversion with a Quasi-phased-matched LiNbO3 waveguide. IEEE J. Quantum Electron. 12(4), 521–528 (2006)CrossRefGoogle Scholar
  4. 4.
    Jansen, S.L., Khoe, G.-D., De Waard, H., Spälter, S., Weiske C., J., Schöpflin, A., Field, S.J., Escobar, H.E., Sher, M.H.: Mixed data rate and format transmission (40-Gbit/s nonreturn-to-zero, 40-Gbit/s duobinary, and 10-Gbit/s non-return-to-zero) by mid-link spectral inversion. Opt. Lett. 29(20), 2348–2350 (2004)CrossRefGoogle Scholar
  5. 5.
    Yates, J.M., Rumsewicz, M.P., Lacey, J.P.R.: Wavelength converters in dynamically reconfigurable WDM networks. IEEE Commun. Surv. 2(2), 2–15 (1999)Google Scholar
  6. 6.
    Okonkwo, C., Almeida, R.C. Jr., Martin, R.E., Guild, K.M.: Performance analysis of an optical packet switch with shared parametric wavelength converters. IEEE Commun. Lett. 12(8), 596–598 (2008)CrossRefGoogle Scholar
  7. 7.
    Watanabe, S., Takeda, S., Chikama, T.: Interband Wavelength Conversion of 320 Gb/s (32 × 10-Gb/s) WDM signal using a polarization-insensitive fiber wave mixer, In Proceedings of ECOC, 85–86 (1998)Google Scholar
  8. 8.
    DeSalvo, R., Wilson, A.G., Rollman, J., Schneider, D.F., Lunardi, L.M., Lumish, S., Agrawal, N., Steinbach, A.H., Baun, W., Wall, T., Michael, R.B., Itzler, M.A., Fejzuli, A., Chipman, R.A., Kiehne, G.T., Kissa, K.M.: Advanced components and sub-system solutions for 40 Gb/s transmission. J. Lightwave Tech. 20(12), 2154–2181 (2002)CrossRefGoogle Scholar
  9. 9.
    Pereira, H.A., Chaves, D.A.R., Bastos-Filho, C.J.A., Martins-Filho, J.F.: OSNR model to consider physical layer impairments in transparent optical networks. Photonic Netw. Commun. 18(2), 137–149 (2009)CrossRefGoogle Scholar
  10. 10.
    Azodomolky, S. et al.: A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Comput. Netw. 53(7), 926–944 (2009)CrossRefGoogle Scholar
  11. 11.
    Fan, Y., Wang, B.: Impairment-aware ordered scheduling in dual-header optical burst switched networks. Photonic Netw. Commun. 19(1), 90–102 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuipers, F.A., Beshir, A.A., Orda, A., Mieghem, P.F.A.V.: Impairment-aware path selection in translucent optical networks, Technical Report, Delft University of Technology (2008)Google Scholar
  13. 13.
    Tordera, E.M. , Martinez, R., Muoz, R., Casellas, R., Pareta, J.S.: Improving IA-RWA algorithms in translucent networks by regenerator allocation, In: Proceedings of ICTON, pp.4 (2009)Google Scholar
  14. 14.
    Namiki, S.: Wide-band and -range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers. J. Lightwave Tech. 26(1), 28–35 (2008)CrossRefGoogle Scholar
  15. 15.
    Li, J.C., Hinton, K., Dods, S.D., Farrell, P.M.: Novel Outage Probability based RWA algorithm, In: Proceedings of OFC, pp. 3 (2008)Google Scholar
  16. 16.
    Zulkifli, N., Idrus, S.M., Farabi, M.A.: Enhanced performance of wavelength converted all-optical networks through dynamic dispersion compensation. In: Proceedings of ICCS, pp.3 (2010)Google Scholar
  17. 17.
    Zulkifli, N., Almeida, R.C. Jr., Guild, K.M.: Efficient resource allocation of heterogeneous services in transparent optical networks. J. Opt. Netw. 6(12), 1349–1359 (2007)CrossRefGoogle Scholar
  18. 18.
    Willner, A.E., Hoanca, B.: Fixed and tunable management of fibre chromatic dispersion. In: Hoanca, B., Hoanca, B. (eds) Optical Fiber Telecommunications IVB, pp. 642–724. Academic Press, San Diego (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nadiatulhuda Zulkifli
    • 1
  • Sevia. M. Idrus
    • 1
  • Abu Sahmah M. Supa’at
    • 1
  • M. A. Farabi
    • 1
  1. 1.Photonic Technology Center, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations