Forward-Looking WDM Network Reconfiguration with Per-Link Congestion Control

  • Jing Wu
  • James Zhang
  • Gregor von Bochmann
  • Michel Savoie
Article
  • 135 Downloads

Abstract

We study reconfigurations of wavelength-routed Wavelength Division Multiplexing (WDM) networks in response to lightpath demand changes, with the objective of servicing more lightpath demands without additional network resources from a long-term network operation point of view. For the reconfiguration problem under study, we assume WDM network operators are provided with lightpath demands in batches. With limited network resources, our problem has two unique challenges: balancing network resource allocations between current and future lightpath demands, and modeling future lightpath demands. The first challenge implies making tradeoffs between accepting as many current immediate lightpath demands as possible and reserving a certain amount of network resources for near future predicted lightpath demands. The second challenge implies modeling future predicted lightpath demands, which are not exactly known or certain as the current lightpath demands. Our proposed model allows a natural separation between the operation of the optical layer and the user traffic layer (predominantly the IP-layer), while supporting their interactions, for which we propose a new formulation for per-link congestion control, associated with a mathematical solution procedure. Our simulation results reveal that by properly controlling resource allocations in the current session using our proposed mechanism, rejections in future sessions are greatly reduced.

Keywords

Optical networks Traffic engineering Load balancing Traffic models WDM network planning 

References

  1. 1.
    Saad, M., Luo, Z.Q.: Reconfiguration with no service disruption in multifiber WDM networks. IEEE/OSA J. Lightwave Technol. 23(10), 3092–3104 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhou, B., Zheng, J., Mouftah, H.T.: Dynamic reconfiguration based on balanced alternate routing algorithm (BARA) for all-optical wavelength-routed WDM networks, IEEE Global Telecommunications Conference (GLOBECOM 2002), pp. 2713–2717, Taipei, Taiwan, China (2002)Google Scholar
  3. 3.
    Zheng, J., Zhou, B., Mouftah, H.T.: Virtual topology design and reconfiguration for virtual private networks (VPN) over all optical WDM networks. Photon Netw. Commun. 7(3), 255–266 (2004)CrossRefGoogle Scholar
  4. 4.
    Sreenath, N., Murthy, C.S.R., Gurucharan, B.H., Mohan, G.: A two-stageapproach for logical topology reconfiguration of WDM OPTICAL NETWORKS. Optic. Netw. Mag. 2(3), 58–71 (2001)Google Scholar
  5. 5.
    Zhang,Y., Yang, O., Wu, J., Savoie,M.: Lightpath reconfiguration in a semi-dynamic WDM network, 49th Annual IEEE Global Communications Conference (GLOBECOM 2006), San Francisco, California, USA, (2006)Google Scholar
  6. 6.
    Zhang, J.Y., Yang, O., Wu, J., Savoie, M.: Optimization of semi-dynamic lightpath rearrangement in a WDM network. IEEE J. Select. Areas Commun. Optic. Commun. Netw. Ser. 25(9), 3–17 (2007)CrossRefGoogle Scholar
  7. 7.
    Din, D.R.: A genetic algorithm for solving virtual topology configuration transition problem in WDM network. Comput. Commun. 30(4), 767–781 (2007)CrossRefGoogle Scholar
  8. 8.
    Din, D.R., Chiu, Y.S.: A genetic algorithm for solving virtual topology reconfiguration problem in survivable WDM networks with reconfiguration constraint. Comput. Commun. 31(10), 2520–2533 (2008)CrossRefGoogle Scholar
  9. 9.
    Palmieri, F., Fiore, U., Ricciardi, S.: A GRASP-basednetwork re-optimization strategy for improving RWA in multi-constrained optical transport infrastructures. Comput. Commun. 33(15), 1809–1822 (2010)CrossRefGoogle Scholar
  10. 10.
    Lee, K., Zhang, L., Youn, C.H.: An adaptive virtual topology reconfiguration policy in multi-wavelength optical Internet. Eur. Transact. Telecommun. 14(5), 417–422 (2003)Google Scholar
  11. 11.
    Zhang, L., Lee, K.H., Youn, C.H., Yeo, H.G.: Adaptive virtual topology reconfiguration policy employing multi-stage traffic prediction in optical internet, Workshop on High Performance Switching and Routing (HPSR 2002), pp. 127–131, Kobe, Japan (2002)Google Scholar
  12. 12.
    Ohsita, Y., Miyamura, T., Arakawa, S., Ata, S., Oki, E., Shiomoto, K., Murata, M.: Gradually reconfiguring virtual network topologies based on estimated traffic matrices. 26th IEEE International Conference on Computer Communications (INFOCOM 2007), pp. 2511–2515, Anchorage, Alaska, USA (2007)Google Scholar
  13. 13.
    Ohsita, Y., Miyamura, T., Arakawa, S., Ata, S., Oki, E., Shiomoto, K., Murata, M.: Gradually reconfiguring virtual network topologies based on estimated traffic matrices. IEEE/ACM Transact. Netw. 18(1), 177–189 (2009)CrossRefGoogle Scholar
  14. 14.
    Koizumi, Y., Miyamura, T., Arakawa, S., Oki, E., Shiomoto, K., Murata, M.: Robust virtual network topology control based on attractor selection, 13th International Conference on Optical Network Design and Modeling (ONDM 2009), pp. 1–6, Braunschweig, Germany (2009)Google Scholar
  15. 15.
    Wu, J.: A survey of WDM network reconfiguration: Strategies and triggering methods. Comput. Netw. 55(11), 2622–2645 (2011)CrossRefGoogle Scholar
  16. 16.
    Gencata, A., Mukherjee, B.: Virtual-topology adaptation for WDM mesh networks under dynamic traffic. IEEE/ACM Transact. Netw. 11(2), 236–247 (2003)CrossRefGoogle Scholar
  17. 17.
    Shimazaki, D., Oki, E., Shiomoto, K.: Multi-layer Traffic engineering experimental system in IP optical network, workshop on High Performance Switching and Routing (HPSR 2007), pp. 1–6, New York City, USA (2007)Google Scholar
  18. 18.
    Pongpaibool, P., Doverspike, R., Roughart, M., Gottlieb, J., Handling IP traffic surges via optical layer reconfiguration, Optical Fiber Communication Conference (OFC 2002), pp. 427–428, Anaheim, California, USA (2002)Google Scholar
  19. 19.
    Tran, P.N., Killat, U.: Dynamic reconfiguration of logical topology for WDM networks under traffic changes, IEEE Network Operations and Management Symposium (NOMS 2008), pp. 279-286, Salvador, Bahia, Brazil (2008)Google Scholar
  20. 20.
    Sumathi, M., Vanathi, P.T.: Dynamic reconfiguration of lightpath with priority based deletion, 10th IEEE Singapore International Conference on Communication systems (ICCS 2006), pp. 1–5, Singapore (2006)Google Scholar
  21. 21.
    Bhandari, S., Park, E.K.: Dynamic reconfiguration for optical network, 14th International Conference on Computer Communications and Networks (ICCCN 2005), pp. 243–248, San Diego, California, USA (2005)Google Scholar
  22. 22.
    Assis, K.D.R., Savasini, M.S., Waldman, H.: Iterative optimization in VTD to maximize the open capacity of WDM networks, lecture notes in computer science, vol 3124, Springer Berlin/Heidelberg, 11th International Conference on Telecommunications (ICT 2004), pp. 735–742, Fortaleza, Brazil (2004)Google Scholar
  23. 23.
    Narula-Tam, A., Modiano, E.: Dynamic load balancing in WDM packet networks with and without wavelength constraints. IEEE J. Select. Areas Commun. 18(10), 1972–1979 (2000)CrossRefGoogle Scholar
  24. 24.
    Mohan, G., Ernest, P.H.H., Bharadwaj, V.: Virtual topology reconfiguration in IP/WDM optical ring networks. Comput. Commun. 26(2), 91–102 (2003)CrossRefGoogle Scholar
  25. 25.
    Sreenath, N., Murthy, C.S.R.: On-line reconfiguration of virtual topologies in wavelength-routed WDM networks. J. High Speed Netw. 12(3–4), 141–169 (2002)Google Scholar
  26. 26.
    Wei, J.Y.: Advances in the management and control of optical internet. IEEE J. Sel. Areas Commun. 20(4), 768–785 (2002)CrossRefGoogle Scholar
  27. 27.
    Bhatia, R., Kodialam, M., Lakshman, T.V.: Fast network re-optimization schemes for MPLS and optical networks. Comput. Netw. 50(3), 317–331 (2006)MATHCrossRefGoogle Scholar
  28. 28.
    Yao, W., Ramamurthy, B.: Rerouting schemes for dynamic traffic grooming in optical WDM mesh networks, IEEE Global Telecommunications Conference (GLOBECOM 2004), vol. 3, pp. 1793–1797, Dallas, Taxes, USA (2004)Google Scholar
  29. 29.
    Lee, K.C., Li, V.O.K.: A wavelength rerouting algorithm in wide-area all-optical networks. IEEE/OSA J. Lightwave Technol. 14(6), 1218–1229 (1996)CrossRefGoogle Scholar
  30. 30.
    Mohan, G., Murthy, C.S.R.: A time optimal wavelength rerouting algorithm for dynamic traffic in WDM networks. IEEE/OSA J. Lightwave Technol. 17(3), 406–417 (1999)CrossRefGoogle Scholar
  31. 31.
    Xue, G.: Optimal lightpath routing and rerouting in WDM networks, IEEE Global Telecommunications Conference (GLOBECOM 2001), vol. 4, pp. 2124–2128, San Antonio, Texas, USA (2001)Google Scholar
  32. 32.
    Koubàa, M., Gagnaire, M.: Lightpath rerouting strategies in WDM All-optical networks under scheduled and random traffic. IEEE/OSA J. Optic. Commun. Netw. 2(10), 859–871 (2010)CrossRefGoogle Scholar
  33. 33.
    Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective, 3rd edn. Morgan Kaufmann, San Francisco, California, USA (2009)Google Scholar
  34. 34.
    Ricciato, F., Salsano, S., Belmonte, A., Listanti, M.: Off-Line configuration of a MPLS over WDM network under time-varying offered traffic. 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), vol. 1, pp. 57–65, New York City, USA (2000)Google Scholar
  35. 35.
    Chou, J., Lin, B.: Coarse optical circuit switching by default, rerouting over circuits for adaptation. J. Optic. Netw. 8(1), 33–50 (2009)CrossRefGoogle Scholar
  36. 36.
    Agrawal, G., Medhi, D.: Lightpath topology configuration for wavelength-routed IP/MPLS Networks for time-dependent traffic, IEEE Global Telecommunications Conference (GLOBECOM 2006), pp. 1–5, San Francisco, California, USA (2006)Google Scholar
  37. 37.
    Sinha, S., Murthy, C.S.R.: Information theoretic approach to traffic adaptive WDM networks. IEEE/ACM Transact. Netw. 13(4), 881–894 (2005)CrossRefGoogle Scholar
  38. 38.
    Baldine, I., Rouskas, G.N.: Traffic adaptive WDM networks: A study of reconfiguration issues. IEEE/OSA J. Lightwave Technol. 19(4), 433–455 (2001)CrossRefGoogle Scholar
  39. 39.
    Huang, S., Dutta, R.: Spare capacity provisioning for quasi-static traffic. Comput. Netw. 51(18), 5011–5035 (2007)MATHCrossRefGoogle Scholar
  40. 40.
    Huang, S., Dutta, R.: Spare Capacity provisioning for dynamic traffic grooming in optical networks, 3rd International Conference on Broadband Communications, Networks and Systems (BROADNETS 2006), pp. 1–10, San Jose, California, USA (2006)Google Scholar
  41. 41.
    Mahalati, R., Dutta, R.: Reconfiguration of traffic grooming optical networks, First International Conference on Broadband Networks (BROADNETS 2004), pp. 170–179, San Jose, California, USA (2004)Google Scholar
  42. 42.
    Golab, W., Boutaba, R.: Policy-driven automated reconfiguration for performance management in WDM optical networks. IEEE Commun. Magaz. 42(1), 44–51 (2004)CrossRefGoogle Scholar
  43. 43.
    Juttner, A., Szabo, I., Szentesi, A.: On bandwidth efficiency of the hose resource management model in virtual private networks, 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), vol. 1, pp. 386–395, San Francisco, California, USA (2003)Google Scholar
  44. 44.
    Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for provisioning virtual private networks in the hose model. IEEE/ACM Transact. Netw. 10(4), 565–578 (2002)CrossRefGoogle Scholar
  45. 45.
    Kodialam, M., Lakshman, T.V., Sengupta, S.: Traffic-oblivious routing in the hose model, IEEE/ACM Transact. Netw. 19(3), 774–787 (2011)CrossRefGoogle Scholar
  46. 46.
    Kodialam, M., Lakshman, T.V., Sengupta, S.: Maximum throughput routing of traffic in the hose model, 25th IEEE International Conference on Computer Communications. Proceedings (INFOCOM 2006), pp. 1–11, Barcelona, Spain (2006)Google Scholar
  47. 47.
    Wang, H., Poo, G.S.: Blocking performance of the hose model and the pipe model for VPN service provisioning over WDM optical networks. J. Optic. Netw. 3(8), 623–635 (2004)CrossRefGoogle Scholar
  48. 48.
    Zhang, X., Li, L.: Robust routing algorithms based on Valiant load balancing for wavelength-division-multiplexing mesh networks, Optical Engineering, vol. 45(8), No. 8, paper 085003 (2006)Google Scholar
  49. 49.
    Dai, R., Li, L., Wang, S.: Adaptive load-balancing in WDM mesh networks with performance guarantees. Photon Netw. Commun. 21(3), 215–227 (2011)CrossRefGoogle Scholar
  50. 50.
    Mukherjee, B., Banerjee, D., Ramamurthy, S., Mukherjee, A.: Some principles for designing a wide-area WDM optical network. IEEE/ACM Transact. Netw. 4(5), 684–696 (1996)CrossRefGoogle Scholar
  51. 51.
    Leung, D., Grover, W.D.: Capacity planning of survivable mesh-based transport networks under demand uncertainty. Photon Netw. Commun. 10(2), 123–140 (2005)CrossRefGoogle Scholar
  52. 52.
    Kennington, J., Olinick, E., Lewis, K., Ortynski, A., Spiride, G.: Robust solutions for the DWDM routing and provisioning problem: Models and algorithms. Optic. Netw. Magaz. 4(2), 74–84 (2003)Google Scholar
  53. 53.
    Leung, D., Arakawa, S., Murata, M., Grover, W.D.: Re-optimization strategies to maximize traffic-carrying readiness in WDM survivable mesh networks, Technical Digest of 2005 Optical Fiber Communication Conference (OFC/NFOEC 2005), vol. 3, Anaheim, California, USA, paper OWG6, (2005)Google Scholar
  54. 54.
    Tran, P.N., Killat, U.: Design of logical topology for IP over WDM networks: Network performance vs. resource utilization, 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium, (2007)Google Scholar
  55. 55.
    Yang, H., Bell, M.G.H.: Models and algorithms for road network design: A review and some new developments. Transp. Rev. 18(3), 257–278 (1998)CrossRefGoogle Scholar
  56. 56.
    Zhang, J.Y., Wu, J., Bochmann, G., Savoie, M.: Resource criticality analysis of static resource allocations and its applications in WDM network planning. IEEE/OSA J. Optic. Commun. Netw. 1(4), 294–306 (2009)CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Canada 2011

Authors and Affiliations

  • Jing Wu
    • 1
  • James Zhang
    • 2
  • Gregor von Bochmann
    • 2
  • Michel Savoie
    • 1
  1. 1.Communications Research Centre (CRC) CanadaOttawaCanada
  2. 2.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations