Journal of Network and Systems Management

, Volume 15, Issue 2, pp 171–190 | Cite as

A Survey of Fault Management in Wireless Sensor Networks

Original Paper

Wireless sensor networks are resource-constrained self-organizing systems that are often deployed in inaccessible and inhospitable environments in order to collect data about some outside world phenomenon. For most sensor network applications, point-to-point reliability is not the main objective; instead, reliable event-of-interest delivery to the server needs to be guaranteed (possibly with a certain probability). The nature of communication in sensor networks is unpredictable and failure-prone, even more so than in regular wireless ad hoc networks. Therefore, it is essential to provide fault tolerant techniques for distributed sensor applications. Many recent studies in this area take drastically different approaches to addressing the fault tolerance issue in routing, transport and/or application layers. In this paper, we summarize and compare existing fault tolerant techniques to support sensor applications. We also discuss several interesting open research directions.

KEY WORDS:

sensor networks fault management fault detection fault diagnosis fault tolerance 

References

  1. 1.
    J. Zhao and R. Govindan, Understanding packet delivery performance in dense wireless sensor networks. Proceedings of ACM SenSys, 2003.Google Scholar
  2. 2.
    A. Woo, T. Tong, and D. Culler, Taming the underlying challenges of reliable multihop routing in sensor networks. In Proceedings of ACM SenSys, 2003.Google Scholar
  3. 3.
    G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, Impact of radio irregularity on wireless sensor networks. In Proceedings of ACM MobiSys, pp. 125–138, 2004.Google Scholar
  4. 4.
    A. Cerpa, J. Wong, L. Kuang, M. Potkonjak, and D. Estrin, Statistical model of lossy links in wireless sensor networks. In Proceedings of IEEE IPSN, April 2005.Google Scholar
  5. 5.
    S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, A taxonomy of wireless micro-sensor network models. Mobile Computing and Communications Review, Vol. 6, No. 2, pp. 28–36, 2002.CrossRefGoogle Scholar
  6. 6.
    A. L. Dos Santos, Jr., E. P. Duarte, and G. M. Keeni, Reliable distributed network management by replication. Journal of Network System Management, Vol. 12, No. 2, pp. 191–213, June 2004.CrossRefGoogle Scholar
  7. 7.
    X. Du, Identifying control and management plane poison message failure by k-nearest neighbor method. Journal of Network System Management, Vol. 14, No. 2, pp. 243–259, June 2006.CrossRefGoogle Scholar
  8. 8.
    J. W. Hong, S. Park, Y. Kang, and J. Park, Enterprise network traffic monitoring, analysis, and reporting using web technology. Journal of Network System Management, Vol. 9, No. 1, pp. 89–111, March 2001.CrossRefGoogle Scholar
  9. 9.
    H. L. Lutfiyya, M. A. Bauer, A. D. Marshall, and D. K. Stokes, Fault management in distributed systems: A policy-driven approach. Journal of Network System Management, Vol. 8, No. 4, pp. 499–525, December 2000.MATHCrossRefGoogle Scholar
  10. 10.
    C. Ensel and A. Keller, An approach for managing service dependencies with xml and the resource description framework. Journal of Network System Management, Vol. 10, No. 2, pp. 147–170, 2002.CrossRefGoogle Scholar
  11. 11.
    W. Ye, J. Heidemann, and D. Estrin, An energy-efficient mac protocol for wireless sensor networks. In Proceedings of InfoCom, 2002.Google Scholar
  12. 12.
    A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and Paradigms. Prentice Hall, 2002.Google Scholar
  13. 13.
    X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, Integrated coverage and connectivity configuration in wireless sensor networks. In Proceeding of the ACM Sensys, 2003.Google Scholar
  14. 14.
    S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava, Coverage problems in wireless ad-hoc sensor networks. In Proceedings of IEEE Infocom, 2001.Google Scholar
  15. 15.
    F. Xue and P. Kumar, The number of neighbors needed for connectivity of wireless networks. Wireless Networks, Vol. 10, No. 10, pp. 169–181, 2004.CrossRefGoogle Scholar
  16. 16.
    V. Isler, K. Daniilidis, and S. Kannan, Sampling based sensor-network deployment. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.Google Scholar
  17. 17.
    Y. Zhao, R. Govindan, and D. Estrin, Residual energy scan for monitoring sensor networks. In Proceedings of IEEE WCNC, 2002.Google Scholar
  18. 18.
    R. Mini, A. Loureiro, and B. Nath, The distinctive design characteristic of a wireless sensor network: the energy map. Elsevier Computer Communications, Vol. 27, No. 10, pp. 935–945, 2004.CrossRefGoogle Scholar
  19. 19.
    Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, Esrt: Event-to-sink reliable transport in wireless sensor networks. In Proceedings of ACM MobiHoc, 2003.Google Scholar
  20. 20.
    C. Y. Wan, S. B. Eisenman, and A. T. Campbell, Coda: Congestion detection and avoidance in sensor networks. In Proceedings of SenSys, 2003.Google Scholar
  21. 21.
    C. Jaikaeo, C. Srisathapornphat, and C. Shen. Diagnosis of sensor networks. In Proceedings of IEEE ICC, 2001.Google Scholar
  22. 22.
    F. Ye, G. Zhong, S. Lu, and L. Zhang, Gradient broadcast: A robust data delivery protocol for large scale sensor networks. ACM WINET, Vol. 11, No. 3, pp. 285–298, 2005.Google Scholar
  23. 23.
    D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM Mobile Computing and Communications Review, Vol. 1, No. 2, pp. 10–24, October 2002.Google Scholar
  24. 24.
    C. Y. Wan, A. T. Campbell, and L. Krishnamurthy, Pump slowly fetch quickly(psfq): A reliable transport protocol for wireless sensor networks. IEEE JSAC, Vol. 23, No. 4, pp. 862–872, 2005.Google Scholar
  25. 25.
    S. J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz, A scalable approach for reliable downstream data delivery in wireless sensor networks. In ACM MobiHoc Conference, 2004.Google Scholar
  26. 26.
    Q. Han, I. Lazaridis, S. Mehrotra, and N. Venkatasubramanian, Sensor data collection with expected reliability guarantees. In Proceedings of IEEE PerSeNS, 2005.Google Scholar
  27. 27.
    J. Staddon, D. Balfanz, and G. Durfee, Efficient tracing of failed nodes in sensor networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 122–130, 2002.Google Scholar
  28. 28.
    N. Ramanathan, K. Chang, L. Girod, R. Kapur, E. Kohler, and D. Estrin, Sympathy for the sensor network debugger. In In Proceedings of SenSys, 2005.Google Scholar
  29. 29.
    S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, Tag: a tiny aggregation service for ad-hoc sensor networks. In USENIX OSDI, 2002.Google Scholar
  30. 30.
    J. Considine, F. Li, G. Kollios, and J. Brers, Approximate aggregation techniques for sensor databases. In Proceedings of IEEE ICDE, 2004.Google Scholar
  31. 31.
    V. Rajendran, K. Obraczka, Y. Yi, S. Lee, K. Tang, and M. Gerla, Combining source- and localized recovery to achieve reliable multicast in multi-hop ad hoc networks. In Proceedings of the Networking, 2004.Google Scholar
  32. 32.
    F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentell, Fault tolerance techniques for wireless ad hoc sensor networks. In Proceedings of IEEE, Vol. 2, pp. 1491–1496, June 2002.Google Scholar
  33. 33.
    T. Clouqueur, K. K. Saluja, and P. Ramanathan, Fault tolerance in collaborative sensor networks for target detection. IEEE Transactions on Computers, Vol. 53, No. 3, pp. 320–333, March 2004.CrossRefGoogle Scholar
  34. 34.
    C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, Distributed regression: an efficient framework for modeling sensor network data. In Proceedings of IPSN, 2004.Google Scholar
  35. 35.
    G. Hartl and B. Li, Loss, inference in wireless sensor networks based on data aggregation. In Proceedings of IEEE IPSN, 2004.Google Scholar
  36. 36.
    A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong, Model driven data acquisition in sensor networks. VLDB Conference, 2004.Google Scholar
  37. 37.
    C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, An adaptive management architecture for ad hoc networks. IEEE Communication Magazine, Vol. 41, No. 2, pp. 108–115, February 2003.Google Scholar
  38. 38.
    R. Badonnel, R. State, and O. Festor, Management of mobile ad hoc networks: information model and probe-based architecture. International Journal of Network Management, Vol. 15, No. 5, pp. 335–347, 2005.CrossRefGoogle Scholar
  39. 39.
    W. Chen, N. Jain, and S. Singh, Anmp: Ad hoc network management protocol. IEEE JSAC, Vol. 17, No. 8, pp. 1506–1531, August 1999.Google Scholar
  40. 40.
    J. Zhao, R. Govindan, and D. Estrin, Computing aggregates for monitoring wireless sensor networks. In Proceedings of SNPA, 2003.Google Scholar
  41. 41.
    N. Ramanathan, E. Kohler, and D. Estrin, Towards a debugging system for sensor networks. International Journal of Nerwork Management, Vol. 15, No. 4, pp. 223–234, 2005.CrossRefGoogle Scholar
  42. 42.
    D. Starobinski, Network observation system (nosy). http://nislab.bu.edu/nislab/projects/wsn_testbed/nosy.html.Google Scholar
  43. 43.
    G. Tolle and D. Culler, Design of an application-cooperative management system for wireless sensor networks. In Proceedings of EWSN, 2005.Google Scholar
  44. 44.
    J. Lim, D. Kiskis, and K. Shin, Aglet: Modular Coordination and Management Framework. EECS, University of Michigan, Ann Arbor.Google Scholar
  45. 45.
    J. Lim, D. Kiskis, and K. Shin, System support for management of networked low-power sensors. In Proceedings of IEEE/IFIP NOMS, 2006.Google Scholar
  46. 46.
    L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, Manna: A management architecture for wireless sensor networks. In IEEE Commmunications Magazine, Vol. 41, No. 41, pp. 116–125, 2003.CrossRefGoogle Scholar
  47. 47.
    L. B. Ruiz, I. G. Siqueira, L. B. e Oliveira, H. C. Wong, J. M. S. Nogueira, and A. A. F. Loureiro, Fault management in event-driven wireless sensor networks. MSWiM ‘04: Proceedings of the 7th ACM international symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematical and Computer SciencesColorado School of MinesGoldenUSA
  2. 2.Department of Mathematical and Computer SciencesColorado School of MinesGoldenUSA

Personalised recommendations