Stress-Dependent Magnetic Flux Leakage: Finite Element Modelling Simulations Versus Experiments

  • Yujue Wang
  • Yevgen Melikhov
  • Turgut Meydan
  • Zengchong Yang
  • Donghang Wu
  • Bin Wu
  • Cunfu He
  • Xiucheng LiuEmail author


Assessing the effect of defect induced stresses on magnetic flux leakage (MFL) signals is a complicated task due to nonlinear magnetomechanical coupling. To facilitate the analysis, a multi-physics finite elemental simulation model is proposed based on magnetomechanical theory. The model works by quasi-statically computing the stress distribution in the specimen, which is then inherited to solve the nonlinear magnetic problem dynamically. The converged solution allows identification and extraction of the MFL signal induced by the defect along the sensor scanning line. Experiments are conducted on an AISI 1045 steel specimen, i.e. a dog-bone shaped rod with a cylindrical square-notch defect. The experiments confirm the validity of the proposed model that predicted a linear dependency of the peak-to-peak amplitude of the normalized MFL signal on applied stress. Besides identifying the effect of stress on the induced MFL signal, the proposed model is also suitable for solving the inverse problem of sizing the defects when stress is involved.


Magnetic flux leakage Magnetomechanics Jiles–Atherton model Non-destructive testing Finite element method Multiphysics numerical simulation 



The authors thank Mr. Zengchong Yang and Donghang Wu from Beijing University of Technology for helping with the experimental work. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11132002 and 11527801) and China Scholarship Council (CSC).

Supplementary material

10921_2019_643_MOESM1_ESM.docx (418 kb)
Supplementary material 1 (DOCX 419 kb)
10921_2019_643_MOESM2_ESM.docx (1.6 mb)
Supplementary material 2 (DOCX 1653 kb)


  1. 1.
    Wu, B., et al.: A novel TMR-based MFL sensor for steel wire rope inspection using the orthogonal test method. Smart Mater. Struct. 24(7), 075007 (2015)CrossRefGoogle Scholar
  2. 2.
    Sun, Y.H., et al.: A methodology for identifying defects in the magnetic flux leakage method and suggestions for standard specimens. J. Nondestr. Eval. 34(3), 20 (2015)CrossRefGoogle Scholar
  3. 3.
    Mandal, K., et al.: Investigations of magnetic flux leakage and magnetic Barkhausen noise signals from pipeline steel. J. Phys. D 30(6), 962–973 (1997)CrossRefGoogle Scholar
  4. 4.
    Mandal, K., Atherton, D.L.: A study of magnetic flux-leakage signals. J. Phys. D 31(22), 3211–3217 (1998)CrossRefGoogle Scholar
  5. 5.
    Wang, Y.J., et al.: Dipole modeling of stress-dependent magnetic flux leakage. NDT&E Int. 95, 1–8 (2018)CrossRefGoogle Scholar
  6. 6.
    Shcherbinin, N.Z.A.V.: Calculation of the magnetostatic field of surface defects. I. Field topography of defect models. Defektoskopiya 5, 50–59 (1966)Google Scholar
  7. 7.
    Edwards, C., Palmer, S.B.: The magnetic leakage field of surface-breaking cracks. J. Phys. D 19(4), 657–673 (1986)CrossRefGoogle Scholar
  8. 8.
    Hwang, J.H., Lord, W.: Finite-element modeling of magnetic field defect interactions. J. Test. Eval. 3(1), 21–25 (1975)CrossRefGoogle Scholar
  9. 9.
    Atherton, D.L., Daly, M.G.: Finite-element calculation of magnetic-flux leakage detector signals. NDT&E Int. 20(4), 235–238 (1987)CrossRefGoogle Scholar
  10. 10.
    Altschuler, E., Pignotti, A.: Nonlinear model of flaw detection in steel pipes by magnetic-flux leakage. NDT&E Int. 28(1), 35–40 (1995)CrossRefGoogle Scholar
  11. 11.
    Schifini, R., Bruno, A.C.: Experimental verification of a finite element model used in a magnetic flux leakage inverse problem. J. Phys. D 38(12), 1875–1880 (2005)CrossRefGoogle Scholar
  12. 12.
    Ivanov, P.A., et al.: Magnetic flux leakage modeling for mechanical damage in transmission pipelines. IEEE Trans. Magn. 34(5), 3020–3023 (1998)CrossRefGoogle Scholar
  13. 13.
    Babbar, V., Shiari, B., Clapham, L.: Mechanical damage detection with magnetic flux leakage tools: modeling the effect of localized residual stresses. IEEE Trans. Magn. 40(1), 43–49 (2004)CrossRefGoogle Scholar
  14. 14.
    Babbar, V., Bryne, J., Clapham, L.: Mechanical damage detection using magnetic flux leakage tools: modeling the effect of dent geometry and stresses. NDT&E Int. 38(6), 471–477 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhong, L.Q., Li, L.M., Chen, X.: Simulation of magnetic field abnormalities caused by stress concentrations. IEEE Trans. Magn. 49(3), 1128–1134 (2013)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans. Magn. 29(4), 2113–2123 (1993)CrossRefGoogle Scholar
  18. 18.
    Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D 28(8), 1537–1546 (1995)CrossRefGoogle Scholar
  19. 19.
    Hubert, O., Lazreg, S.: Two phase modeling of the influence of plastic strain on the magnetic and magnetostrictive behaviors of ferromagnetic materials. J. Magn. Magn. Mater. 424, 421–442 (2017)CrossRefGoogle Scholar
  20. 20.
    Bastos, J.O.P.A.A.O., Sadowski, N.: Magnetic Materials and 3D Finite Element Modeling. CRC Press, Boca Raton (2014)Google Scholar
  21. 21.
    Bergqvist, A.J.: A simple vector generalization of the Jiles-Atherton model of hysteresis. IEEE Trans. Magn. 32(5), 4213–4215 (1996)CrossRefGoogle Scholar
  22. 22.
    Jiles, D.C., Atherton, D.L.: Theory of the magnetization process in ferromagnets and its application to the magnetomechanical effect. J. Phys. D 17(6), 1265–1281 (1984)CrossRefGoogle Scholar
  23. 23.
    Raghunathan, A., et al.: Generalized form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis. Appl. Phys. Lett. 95(17), 172510 (2009)CrossRefGoogle Scholar
  24. 24.
    Liu, X., Wang, Y., et al.: Design of tunnel magnetoresistive-based circular MFL sensor array for the detection of flaws in steel wire rope. J. Sens. (2016). CrossRefGoogle Scholar
  25. 25.
    Li, Z., et al.: Queries on the J-A modeling theory of the magnetization process in ferromagnets and proposed correction method. Proc. CSEE 31(3), 8 (2011)Google Scholar
  26. 26.
    Mierczak, L.: Evaluation of structural integrity of steel components by non-destructive magnetic methods. PhD thesis, Cardiff University (2015)Google Scholar
  27. 27.
    Mierczak, L., Jiles, D.C., Fantoni, G.: A new method for evaluation of mechanical stress using the reciprocal amplitude of magnetic Barkhausen noise. IEEE Trans. Magn. 47(2), 459–465 (2011)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Tian, G.Y., Ward, S.: Numerical simulation on magnetic flux leakage evaluation at high speed. NDT&E Int. 39(5), 367–373 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhang, L.T., et al.: Influence of specimen velocity on the leakage signal in magnetic flux leakage type nondestructive testing. J. Nondestr. Eval. (2015). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wolfson Centre for Magnetics, School of EngineeringCardiff UniversityCardiffUK
  2. 2.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations