Detecting Phase-Type Defects of Transparent Samples Using Infrared Phase-Shifting Shearing Interferometer

  • Shyh-Tsong Lin
  • Xuan-Hung TrinhEmail author
  • Hong-Hai Hoang


A shearing interferometer based on the use of a low-coherence short-wave infrared source, two Savart shear devices, and the phase-shifting technique is proposed in this research. It is free of speckle-noise and robust to environmental perturbations, and it is capable to identify phase-type defects in the inspected sample using a gradient image obtained by the phase-shifting technique. This paper introduces the configuration, measurement theory, experimental setup, and experimental results of the proposed interferometer. The results confirm the capability of defect detections of the proposed interferometer.


Nondestructive testing Phase-shifting Shearing interferometer 



The support from the Ministry of Science and Technology, Taiwan, Republic of China (Grant No.: MOST 107-2221-E-027-055-) is gratefully acknowledged.


  1. 1.
    Tsai, C.S., Wang, S.K., Lee, C.C.: Visualization of solid material joints using a transmission type scanning acoustic microscope. Appl. Phys. Lett. 31, 317–320 (1977)CrossRefGoogle Scholar
  2. 2.
    Wickramasinghe, H.K.: Scanning acoustic microscopy: a review. J. Microsc. 129, 63–73 (1983)CrossRefGoogle Scholar
  3. 3.
    Wang, J.K., Tsai, C.S.: Acoustic transmission and image contrast of tilted plate specimens in transmission acoustic microscopy. IEEE Trans. Sonics Ultrason. 32, 241–247 (1985)CrossRefGoogle Scholar
  4. 4.
    Nakagaki, R., Honda, T., Nakamae, K.: Automatic recognition of defect areas on a semiconductor wafer using multiple scanning electron microscope images. Meas. Sci. Technol. 20, 12 (2009)CrossRefGoogle Scholar
  5. 5.
    Zontak, M., Cohen, I.: Defect detection in patterned wafers using multichannel scanning electron microscope. Signal Process. 89, 1511–1520 (2009)CrossRefGoogle Scholar
  6. 6.
    Kuwajima, M., Mendenhall, J.M., Lindsey, L.F., Harris, K.M.: Automated transmission-mode scanning electron microscopy (tSEM) for Large volume analysis at nanoscale resolution. PLoS ONE 8, e59573 (2013)CrossRefGoogle Scholar
  7. 7.
    Ibarra-Castanedo, C., Bendada, A., Avdelidis, N.P., Maldague, X.P.V.: Nondestructive assessment of glass fibre composites by mid-wave and near infrared vision. Mater. Trans. 53, 601–603 (2012)CrossRefGoogle Scholar
  8. 8.
    Höglund, J., Kiss, Z., Nadudvari, G., Kovacs, Z., Velkei, S., Moore, C., Vartanian, V., Allen, R.A.: Detection and characterization of three-dimensional interconnect bonding voids by infrared microscopy. J. Micro/Nanolith. MEMS MOEMS 13, 8 (2014)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Liu, N., You, B., Xiao, B.: A novel method for surface defect inspection of optic cable with short-wave infrared illuminance. Infrared Phys. Technol. 77, 456–463 (2016)CrossRefGoogle Scholar
  10. 10.
    Hariharan, P.: Interferometry with lasers. Prog. Opt. 24, 103–164 (1987)CrossRefGoogle Scholar
  11. 11.
    Hariharan, P.: Optical interferometry. Rep. Prog. Phys. 54, 339–390 (1991)CrossRefGoogle Scholar
  12. 12.
    Dudi, O., Grubbs, W.T.: Laser interferometric technique for measuring polymer cure kinetics. J. Appl. Polym. Sci. 74, 2133–2142 (1999)CrossRefGoogle Scholar
  13. 13.
    Liu, S., Ume, I.C., Achari, A., Gamalski, J.: “Capabilities of a flip chip defects inspection method by using laser techniques. Proc. SPIE 4428, 31–36 (2001)CrossRefGoogle Scholar
  14. 14.
    Inoue, K., Komatsu, S., Trinh, X.A., Norisuye, T., Tran-Cong-Miyata, Q.: Local deformation in photo-crosslinked polymer blends monitored by Mach-Zehnder interferometry. J. Polym. Sci. B 43, 2898–2913 (2005)CrossRefGoogle Scholar
  15. 15.
    Munoz, V.H.F., Arellano, N.I.T., Garcia, D.I.S., Garcia, A.M., Zurita, G.R., Lechuga, L.G.: Measurement of mean thickness of transparent samples using simultaneous phase shifting interferometry with four interferograms. Appl. Opt. 55, 4047–4051 (2016)CrossRefGoogle Scholar
  16. 16.
    Gasvik, K.J.: Interference, Chap. 3. In: Optical Metrology, 3rd ed., Wiley, Hoboken (2003)Google Scholar
  17. 17.
    Hecht, E.: Interference, Chap. 9. In: Optics, 5th ed., Pearson Education, Ltd, LondonGoogle Scholar
  18. 18.
    Francon, M., Mallick, S.: Polaized Interferometer, Wiley, Hoboken (1972)Google Scholar
  19. 19.
    Guo, X., Zeng, A., Huang, H.: Spatial phase-shifting lateral shearing interferometer. Proc. SPIE 7160, 8 (2008)Google Scholar
  20. 20.
    Cloud, G.: Phase shifting to improve interferometry, Chap. 22. In: Optical Methods of Engineering Analysis, Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shyh-Tsong Lin
    • 1
  • Xuan-Hung Trinh
    • 1
    Email author
  • Hong-Hai Hoang
    • 2
  1. 1.Department of Electro-Optical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.School of Mechanical EngineeringHanoi University of Science and TechnologyHanoi CityVietnam

Personalised recommendations