Evaluation of Bridge Abutment with Ultraseismic Waveform Tomography: Field Data Application

  • Khiem T. TranEmail author
  • Farrokh Jalinoos
  • Trung Dung Nguyen
  • Anil K. Agrawal


This paper presents an application of ultraseismic waveform tomography for condition evaluation (determination of elastic properties) and the unknown depth of a concrete bridge abutment. A newly developed waveform tomography technique for bounded medium (e.g. thin plate) was applied to an ultraseismic dataset collected on a 30-m long bridge in New York City. The dataset was measured on the top of abutment using 24 100-Hz vertical geophones uniformly spaced at 1.2 m apart, and a 3-lb hammer source to induce wave energy. The results revealed that the waveform analysis was able to characterize both the S-wave and P-wave velocities (Vs and Vp) of the abutments and the supporting soils. The true abutment depth of 5.7 m was generally identified in both inverted Vs and Vp profiles. The main advantages of this approach include: (1) data acquisition on top of the abutment is more convenient and cost effective compared to measurements from the ground, boreholes, or river-beds for water bridges; and (2) abutment concrete physical elastic properties are characterized at high resolution in cells. To our best understanding, this is the first reported study using the waveform tomography on field data for assessment of concrete abutments or wall-type structures.


Ultraseismic waveform tomography Concrete bridge abutment Waveforms in bounded medium 



This material is based upon work supported by Federal Highway Administration under contract number DTFH61-14-D-00010. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors(s) and do not necessarily reflect the views of the Federal Highway Administration. The authors would like to thank New York City department of transportation for providing access to the bridge site.


  1. 1.
    Aouad, M.F., Olson, L.D., Jalinoos, F.: Determination of unknown depth of bridge abutments using the spectral analysis of surface waves (SASW) and parallel seismic (PS) test methods. In: Proceedings of the 2nd International Conference on Nondestructive Testing of Concrete in the Infrastructure, Nashville, Tennessee (1996)Google Scholar
  2. 2.
    Jalinoos, F., Aouad, M.F., Olson, L.D.: Three stress-wave methods for the determination of unknown pile depths. In: Stress Waves ‘96 Conference, Orlando, Florida (1996)Google Scholar
  3. 3.
    Jalinoos, F., Olson, L.D.: Determination of unknown depth of bridge foundations using nondestructive testing methods. In: Structural Materials Technology, an NDT Conference, San Diego, California (1996)Google Scholar
  4. 4.
    Jalinoos, F., Tran, K.T., Nguyen, D.T., Agrawal, A.: Evaluation of bridge abutments and bounded wall type structures with ultraseismic waveform tomography. J Bridge Eng 22(12), 04017104 (2017)CrossRefGoogle Scholar
  5. 5.
    Olson, L.D., Jalinoos, F., Aouad, M.F.: Determination of Unknown Subsurface Bridge Foundations, NCHRP Project No.E21-5, Transportation Research Board, National Research Council, Washington, DC, USA (1998)Google Scholar
  6. 6.
    Wang, H., Hu, C.H.: Identification on unknown bridge foundations using geophysical inspecting methods. In: International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), 15–17 Sept 2015, Berlin, Germany (2015)Google Scholar
  7. 7.
    Wightman, W., Jalinoos, F., Sirles P., Hanna, K.: Applications of geophysical methods to related highway problems. Final Report and Web Manual, Federal Highway Administration, Central Federal Lands Highway Division, Publication No. FHWA-IF-04-021 (2004)Google Scholar
  8. 8.
    Park, C.B., Miller, R.D., Xia, J.: Multi-channel analysis of surface wave (MASW). Geophysics 64(3), 800–808 (1999)CrossRefGoogle Scholar
  9. 9.
    Tran, K.T., Hiltunen, D.R.: Inversion of first-arrival time using simulated annealing. Journal of Environmental and Engineering Geophysics, EEGS 16, 25–35 (2011)CrossRefGoogle Scholar
  10. 10.
    Vireux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC1–WCC26 (2009)CrossRefGoogle Scholar
  11. 11.
    Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., Virieux, J.: Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures. Geophys Prospect 62(6), 1353–1375 (2014)CrossRefGoogle Scholar
  12. 12.
    Pratt, R.G.: Seismic waveform inversion in the frequency domain, Part I: theory and verification in a physic scale model. Geophysics 64, 888–901 (1999)CrossRefGoogle Scholar
  13. 13.
    Prieux, V., Brossier, R., Operto, S., Virieux, J.: Multi-parameter full waveform inversion of multicomponent OBC data from valhall, Part 1: imaging compressional wave speed, density and attenuation. Geophys J Int 194(3), 1640–1664 (2013)CrossRefGoogle Scholar
  14. 14.
    Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., Dell’Aversana, P.: Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-wavefield tomography: application to a thrust belt. Geophys J Int 159, 1032–1056 (2004)CrossRefGoogle Scholar
  15. 15.
    Sears, T., Singh, S., Barton, P.: Elastic full waveform inversion of multi-component OBC seismic data. Geophys Prospect 56, 843–862 (2008)CrossRefGoogle Scholar
  16. 16.
    Sheen, D.H., Tuncay, K., Baag, C.E., Ortoleva, P.J.: Time domain Gauss-Newton seismic waveform inversion in elastic media. Geophys J Int 167, 1373–1384 (2006)CrossRefGoogle Scholar
  17. 17.
    Shipp, R.M., Singh, S.C.: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys J Int 151, 325–344 (2002)CrossRefGoogle Scholar
  18. 18.
    Epanomeritakis, I., Akcelik, V., Ghattas, O., Bielak, J.: A Newton-CG method for large-scale three-dimensional elastic full waveform seismic inversion. Inverse Probl 24, 034015 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fichtner, A., Kennett, B., Igel, H., Bunge, H.P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys J Int 179, 1703–1725 (2009)CrossRefGoogle Scholar
  20. 20.
    Ha, W., Kang, S.-G., Shin, C.: 3D Laplace-domain waveform inversion using a low-frequency time-domain modeling algorithm. Geophysics 80, R1–R13 (2015)CrossRefGoogle Scholar
  21. 21.
    Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., Virieux, J.: An optimal transport approach for seismic tomography: application to 3D full waveform inversion. Inverse Probl. 32, 115008 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tape, C., Liu, Q., Maggi, A., Tromp, J.: Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophys J Int 180, 433–462 (2010)CrossRefGoogle Scholar
  23. 23.
    Trinh, P.T., Brossier, R., Métivier, L., Tavard, L., Virieux, J.: Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible Cartesian-based mesh. Geophysics 84(1), R75–R97 (2018)Google Scholar
  24. 24.
    Vigh, D., Kapoor, J., Moldoveanu, N., Li, H.: Breakthrough acquisition and technologies for subsalt imaging. Geophysics 76, WB41–WB51 (2011)CrossRefGoogle Scholar
  25. 25.
    Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N.: Anisotropic 3D full-waveform inversion. Geophysics 78(2), R59–R80 (2013)CrossRefGoogle Scholar
  26. 26.
    Kallivokas, L.F., Fathi, A., Kucukcoban, S., Stokoe, K.H., Bielak, J., Ghattas, O.: Site characterization using full waveform inversion. Soil Dyn Earthq Eng 47, 62–82 (2013)CrossRefGoogle Scholar
  27. 27.
    Köhn, D., Meier, T., Fehr, M., De Nil, D., Auras, M.: Application of 2D Elastic Rayleigh Waveform Inversion to Ultrasonic Laboratory and Field Data. Near Surface Geophysics 14(5), 461–476 (2016)CrossRefGoogle Scholar
  28. 28.
    Nguyen, D.T., Tran, K.T., McVay, M.: Evaluation of unknown foundations using surface-based full waveform tomography. J Bridge Eng 21(5), 04016013-1–04016013-10 (2016)CrossRefGoogle Scholar
  29. 29.
    Tran, K.T., McVay, M., Faraone, M., Horhota, D.: Sinkhole detection using 2-D full seismic waveform tomography. Geophysics 78(5), R175–R183 (2013)CrossRefGoogle Scholar
  30. 30.
    Tran, K.T., McVay, M.: Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in time domain. Soil Dyn Earthq Eng 43, 16–24 (2012)CrossRefGoogle Scholar
  31. 31.
    Nguyen, D.T., Tran, K.T.: Site characterization with 3-D elastic full waveform tomography. Geophysics 83(5), R389–R400 (2018)CrossRefGoogle Scholar
  32. 32.
    Tran, K.T., Jalinoos, F., Agrawal, A.: Characterization of concrete pile groups with 2-D seismic waveform tomography. J. Nondestruct Eval 38, 25 (2019). CrossRefGoogle Scholar
  33. 33.
    Tran, K.T., Mirzanejad, M., McVay, M., Horhota, D.: 3D time-domain Gauss-Newton full waveform inversion for near-surface site characterization. Geophys J Int 217, 206–218 (2019)CrossRefGoogle Scholar
  34. 34.
    Bretaudeau, F., Brossier, R., Leparoux, D., Abraham, O., Virieux, J.: 2D elastic full-waveform imaging of the near-surface: application to synthetic and physical modelling data sets. Near Surf Geophys 11(3), 307–316 (2013)CrossRefGoogle Scholar
  35. 35.
    Nguyen, D.T., Tran, K.T., Gucunski, N.: Detection of bridge deck delamination using full ultrasonic waveform tomography. J Infrastruct Syst 23, 04016027-1–04016027-9 (2016). CrossRefGoogle Scholar
  36. 36.
    Zerwer, A., Polak, M.A., Santamarina, J.C.: Wave propagation in thin Plexiglas plates: implications for Rayleigh waves. NDT&E International 33, 33–41 (2000)CrossRefGoogle Scholar
  37. 37.
    Kolsky, H.: Stress Waves in Solids. Dover Publications Inc, New York (1963)zbMATHGoogle Scholar
  38. 38.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York (1944)zbMATHGoogle Scholar
  39. 39.
    Virieux, J.: P-SV wave propagation in heterogeneous media: velocity–stress finite-difference method. Geophysics 51(4), 889–901 (1986)CrossRefGoogle Scholar
  40. 40.
    Kamatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), SM155–SM167 (2007)CrossRefGoogle Scholar
  41. 41.
    Mora, P.: Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 52, 1211–1228 (1987)CrossRefGoogle Scholar
  42. 42.
    Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49, 1259–1266 (1984)CrossRefGoogle Scholar
  43. 43.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Halstead Press, New South Wales (1977)zbMATHGoogle Scholar
  44. 44.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)zbMATHGoogle Scholar
  45. 45.
    Tran K.T., Hiltunen, D.R.: A comparison of shear wave velocity profiles from SASW, MASW, and ReMi techniques: Geotechnical Earthquake Engineering and Soil Dynamics IV, vol. 181. ASCE Geotechnical Special Publication (2008)Google Scholar
  46. 46.
    Bunks, C., Saleck, F.M., Zaleski, S., Chavent, G.: Multiscale seismic waveform inversion. Geophysics 60, 1457–1473 (1995)CrossRefGoogle Scholar
  47. 47.
    Ernst, J.R., Maurer, H., Green, A.G., Holliger, K.: Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data. Geophysics 72, 53–64 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Khiem T. Tran
    • 1
    Email author
  • Farrokh Jalinoos
    • 2
  • Trung Dung Nguyen
    • 3
  • Anil K. Agrawal
    • 4
  1. 1.Department of Civil and Coastal EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Office of Infrastructures R&DFederal Highway AdministrationMcLeanUSA
  3. 3.University of CanterburyChristchurchNew Zealand
  4. 4.Department of Civil EngineeringCity College of the City University of New YorkNew YorkUSA

Personalised recommendations