Advertisement

Single-Impact Nonlinear Resonant Acoustic Spectroscopy for Monitoring the Progressive Alkali–Silica Reaction in Concrete

  • Jiang Jin
  • Weilun Xi
  • Jacques Riviere
  • Parisa ShokouhiEmail author
Article

Abstract

Alkali–silica reaction (ASR) is a ubiquitous cause of concrete degradation. The reaction produces an expandable gel that may cause internal over-stressing and cracking. This paper demonstrates the utility of single-impact nonlinear resonant acoustic spectroscopy (SINRAS) for monitoring the progress of ASR over the course of a standard ASR-susceptibility test. In SINRAS, the transient softening and subsequent recovery of resonance frequency due to one strong impact are analyzed. The performance of SINRAS in monitoring ASR is compared to that of multi-impact nonlinear resonant acoustic spectroscopy (MINRAS), where the gradual resonance frequency shifts caused by impacts of increasing intensity is measured. The changes in standard linear expansion and linear resonance frequency are recorded in parallel. Finally, the sensitivity of measured parameters to sample temperature is investigated. Our findings indicate that SINRAS, while being much simpler and faster to conduct, yields results that strongly correlate to those from MINRAS and even gives an additional parameter describing the rate of recovery. The extracted nonlinearity parameters exhibit good sensitivity and clearly differentiate between concrete with reactive and non-reactive aggregates. Further, this study suggests that the influence of sample temperature on the nonlinearity parameters depends on the level of ASR progression and has to be taken account.

Keywords

Concrete Alkali–silica reaction Non-destructive evaluation Nonlinear acoustics Nonlinear resonant acoustic spectroscopy 

Notes

Acknowledgements

Weilun Xi was supported through a Research Experience for Undergraduate (REU) award of Penn State’s College of Engineering in Summer 2015. This support is greatly acknowledged.

References

  1. 1.
    NRC Information Notice 2011–2020: Concrete Degradation by Alkali–Silica Reaction (2011)Google Scholar
  2. 2.
    Stanton, T.: Expansion of concrete through reaction between cement and aggregate. Proc. Am. Soc. Civ. Eng. 66, 1781–1811 (1940)Google Scholar
  3. 3.
    ASTM C1293-08b: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) (2014)Google Scholar
  4. 4.
    ASTM C1293-08b: Standard Test Method for Determination of Length Change of Concrete Due to Alkali–Silica Reaction (2015)Google Scholar
  5. 5.
    Fournier, B., Bérubé, M.-A., Folliard, K.J., Thomas, M.: Report on the Diagnosis, Prognosis, and Mitigation of Alkali–Silica Reaction (ASR) in Transportation Structures. FHWA-HIF-09-004 2 (2010)Google Scholar
  6. 6.
    Hashemi, A., Hatfield, S., Donnell, K.M., Zoughi, R., Kurtis, K.E.: Microwave NDE method for health-monitoring of concrete structures containing alkali–silica reaction (ASR) gel. In: AIP Conference Proceedings 1581, Baltimore, Maryland, USA, p. 787 (2014)Google Scholar
  7. 7.
    Donnell, K.M., Hatfield, S., Zoughi, R., Kurtis, K.E.: Wideband microwave characterization of alkali–silica reaction (ASR) gel in cement-based materials. Mater. Lett. 90, 159–161 (2013)CrossRefGoogle Scholar
  8. 8.
    Rivard, P., Saint-Pierre, F.: Assessing alkali–silica reaction damage to concrete with non-destructive methods: from the lab to the field. Constr. Build. Mater. 23, 902–909 (2009)CrossRefGoogle Scholar
  9. 9.
    Swamy, R.N., Al-Asali, M.M.: Engineering properties of concrete affected by alkali–silica reaction. Mater. J. 85, 367–374 (1989)Google Scholar
  10. 10.
    Saint-Pierre, F., Rivard, P., Ballivy, G.: Measurement of alkali–silica reaction progression by ultrasonic waves attenuation. Cem. Concr. Res. 37, 948–956 (2007)CrossRefGoogle Scholar
  11. 11.
    Sargolzahi, M., Rivard, P., Rhazi, J.: Evaluation of residual reactivity of concrete cores from ASR-affected structures by non-destructive tests. Non-destr. Test. Civ. Eng. 3, 1–6 (2009)Google Scholar
  12. 12.
    Sargolzahi, M., Kodjo, S.A., Rivard, P., Rhazi, J.: Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete. Constr. Build. Mater. 24, 1398–1403 (2010)CrossRefGoogle Scholar
  13. 13.
    Deroo, F., Kim, J., Qu, J., Sabra, K., Jacobs, L.J.: Detection of damage in concrete using diffuse ultrasound (L). J. Acoust. Soc. Am. 127, 3315–3318 (2010)CrossRefGoogle Scholar
  14. 14.
    Rivard, P., Ballivy, G., Gravel, C., Saint-Pierre, F.: Monitoring of an hydraulic structure affected by ASR: a case study. Cem. Concr. Res. 40, 676–680 (2010)CrossRefGoogle Scholar
  15. 15.
    Gong, P., Patton, M.E., Liu, C., Oppenheim, I.J., Greve, D.W., Harley, J.B., Junker, W.R.: Ultrasonic detection of the alkali–silica reaction damage in concrete. In: IEEE International Ultrasonic Symposium Proceeding, pp. 361–364 (2014)Google Scholar
  16. 16.
    Boukari, Y., Bulteel, D., Rivard, P., Abriak, N.-E.: Combining nonlinear acoustics and physico-chemical analysis of aggregates to improve alkali–silica reaction monitoring. Cem. Concr. Res. 67, 44–51 (2015)CrossRefGoogle Scholar
  17. 17.
    Abdelrahman, M., ElBatanouny, M.K., Ziehl, P., Fasl, J., Larosche, C.J., Fraczek, J.: Classification of alkali–silica reaction damage using acoustic emission: a proof-of-concept study. Constr. Build. Mater. 95, 406 (2015)CrossRefGoogle Scholar
  18. 18.
    Jin, J., Moreno, M.G., Riviere, J., Shokouhi, P.: Impact-based nonlinear acoustic testing for characterizing distributed damage in concrete. J. Nondestruct. Eval. 36, 51 (2017)CrossRefGoogle Scholar
  19. 19.
    Eiras, J.N., Monzó, J., Payá, J., Kundu, T., Popovics, J.S.: Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J. Acoust. Soc. Am. 135, EL82–EL87 (2014)CrossRefGoogle Scholar
  20. 20.
    Payan, C., Ulrich, T.J., Le Bas, P.Y., Saleh, T., Guimaraes, M.: Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: application to concrete thermal damage. J. Acoust. Soc. Am. 136, 537 (2014)CrossRefGoogle Scholar
  21. 21.
    Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121, EL125–EL130 (2007)CrossRefGoogle Scholar
  22. 22.
    Van Den Abeele, K.E., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT E Int. 34, 239–248 (2001)CrossRefGoogle Scholar
  23. 23.
    Van Den Abeele, K., Le Bas, P.Y., Van Damme, B., Katkowski, T.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: experimental and theoretical study. J. Acoust. Soc. Am. 126, 963–972 (2009)CrossRefGoogle Scholar
  24. 24.
    Van Den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30, 1453–1464 (2000)CrossRefGoogle Scholar
  25. 25.
    Johnson, P.A., TenCate, J.A., Guyer, R.A., Van Den Abeele, K.E.A.: Resonant nonlinear ultrasound spectroscopy. U.S. Patent No. 6,330,827 (2001)Google Scholar
  26. 26.
    Leśnicki, K.J., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT E Int. 44, 721–727 (2011)CrossRefGoogle Scholar
  27. 27.
    Lesnicki, K.J., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Accelerated Determination of ASR Susceptibility During Concrete Prism Testing Through Nonlinear Resonance Ultrasonic Spectroscopy. Fhwa-Hrt-13-085 (2013)Google Scholar
  28. 28.
    Moradi-Marani, F., Kodjo, S.A., Rivard, P., Lamarche, C.-P.: Effect of the temperature on the nonlinear acoustic behavior of reinforced concrete using dynamic acoustoelastic method of time shift. J. Non-destruct. Eval. 33, 288–298 (2014)CrossRefGoogle Scholar
  29. 29.
    Kodjo, A.S., Rivard, P., Cohen-Tenoudji, F., Gallias, J.-L.: Impact of the alkali–silica reaction products on slow dynamics behavior of concrete. Cem. Concr. Res. 41, 422–428 (2011)CrossRefGoogle Scholar
  30. 30.
    Chen, J., Jayapalan, A.R., Kim, J., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40, 914–923 (2010)CrossRefGoogle Scholar
  31. 31.
    TenCate, J.A., Smith, E., Guyer, R.A.: Universal slow dynamics in granular solids. Phys. Rev. Lett. 85, 1020–1023 (2000)CrossRefGoogle Scholar
  32. 32.
    Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45, 304–335 (1992)CrossRefGoogle Scholar
  33. 33.
    Zheng, Y., Maev, R.G., Solodov, I.Y.: Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (2000)CrossRefGoogle Scholar
  34. 34.
    Ghahremani, S., Guan, Y., Radlińska, A., Shokouhi, P.: Carbonation-induced microstructural evolution of alkali-activated slag (AAS) revealed by nonlinear resonant acoustic spectroscopy (NRAS). Adv. Civ. Eng. Mater. ASTM. In press (2018)Google Scholar
  35. 35.
    ASTM C215-14: Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. (2014)Google Scholar
  36. 36.
    Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)CrossRefGoogle Scholar
  37. 37.
    Guyer, R., Johnson, P.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley, Berlin (2009)CrossRefGoogle Scholar
  38. 38.
    Dahlen, U., Ryden, N., Jakobsson, A.: Damage identification in concrete using impact non-linear reverberation spectroscopy. NDT E Int. 75, 15–25 (2015)CrossRefGoogle Scholar
  39. 39.
    Carrión, A., Genovés, V., Pérez, G., Payá, J., Gosálbez, J.: Flipped accumulative non-linear single impact resonance acoustic spectroscopy (FANSIRAS): a novel feature extraction algorithm for global damage assessment. J. Sound Vib. 432, 454–469 (2018)CrossRefGoogle Scholar
  40. 40.
    Renaud, G., Talmant, M., Callé, S., Defontaine, M., Laugier, P.: Nonlinear elastodynamics in micro-inhomogeneous solids observed by head-wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130, 3583–3589 (2011)CrossRefGoogle Scholar
  41. 41.
    TenCate, J.A.: Slow dynamics of earth materials: an experimental overview. Pure Appl. Geophys. 168, 2211–2219 (2011)CrossRefGoogle Scholar
  42. 42.
    Vakhnenko, O.O., Vakhnenko, V.O., Shankland, T.J., TenCate, J.A.: Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary rocks. AIP Conf. Proc. 838, 120–123 (2006)CrossRefGoogle Scholar
  43. 43.
    Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124–130 (2005)CrossRefGoogle Scholar
  44. 44.
    Salwocki, S.B.: Novel Performance Tests for Evaluation of Alkali–Silica Reaction. Master’s thesis (2016)Google Scholar
  45. 45.
    Rashidi, M., Knapp, M.C.L., Hashemi, A., Kim, J., Donnell, K.M., Zoughi, R., Jacobs, L.J., Kurtis, K.E.: Detecting alkali–silica reaction: a multi-physics approach. Cem. Concr. Compos. 73, 123–135 (2016)CrossRefGoogle Scholar
  46. 46.
    Leśnicki, K.J., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Assessment of alkali–silica reaction damage through quantification of concrete nonlinearity. Mater. Struct. 46, 497–509 (2013)CrossRefGoogle Scholar
  47. 47.
    Thomas, M., Fournier, B., Folliard, K., Ideker, J., Shehata, M.: Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete. Cem. Concr. Res. 36, 1842–1856 (2006)CrossRefGoogle Scholar
  48. 48.
    Van Damme, B., Van Den Abeele, K.: The application of nonlinear reverberation spectroscopy for the detection of localized fatigue damage. J. Nondestruct. Eval. 33, 263–268 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations