Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography

  • N. MontinaroEmail author
  • D. Cerniglia
  • G. Pitarresi


The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser crosses a crack. The paper, in particular, illustrates how the use of multiple ROIs, placed at different locations, may provide additional information that can be used to characterize the defect, and to identify the crack tip location. The approach is validated on plates made of steel and aluminum alloy, where natural cracks have been introduced by fatigue loading, and whose surface has been painted to enhance emissivity. Scratches in the paint have been artificially made in order to analyze their influence on the defect signature. The proposed experimental setup is further simplified by moving the plate samples, mounted on slits, in front of a still laser source and camera head.


Non-destructive testing Laser thermography Thermal analysis IR thermography 



  1. 1.
    Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990)Google Scholar
  2. 2.
    Kubiak, E.J.: Infrared detection of fatigue cracks and other near-surface defects. Appl. Opt. 7, 1743–1747 (1968). CrossRefGoogle Scholar
  3. 3.
    Kaufman, I., Chang, P.-T., Hsu, H.-S., Huang, W.-Y., Shyong, D.-Y.: Photothermal radiometric detection and imaging of surface cracks. J. Nondestruct. Eval. 6, 87–100 (1987). CrossRefGoogle Scholar
  4. 4.
    Gruss, C., Balageas, D.: Nondestructive evaluation using a flying-spot camera. In: QIRT Conference (1992)Google Scholar
  5. 5.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: Detection and characterisation of disbonds on Fibre Metal Laminate hybrid composites by flying laser spot thermography. Compos. Part B Eng. 108, 164–173 (2017). CrossRefGoogle Scholar
  6. 6.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: A numerical study on interlaminar defects characterization in fibre metal laminates with flying laser spot thermography. J. Nondestruct. Eval. 37, 41 (2018). CrossRefGoogle Scholar
  7. 7.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: A numerical and experimental study through laser thermography for defect detection on metal additive manufactured parts. Frat. ed Integrita Strutt. 12, 231–240 (2018). CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Kuo, P., Favro, L., Thomas, R.: Flying laser spot thermal wave IR imaging of horizontal and vertical cracks. In: Review of Progress in Quantitative Nondestructive Evaluation, pp. 453–456 (1990)CrossRefGoogle Scholar
  9. 9.
    Krapez, J.: Solution spatiale De La camera thermique source volante. Int. J. Therm. Sci. 38, 769–779 (1999). CrossRefGoogle Scholar
  10. 10.
    Krapez, J.-C., Gruss, C., Huttner, R., Lepoutre, F., Legrandjacques, L.: La caméra photothermique (flying spot camera) I—principe, modélisation, application à la détection de. Instrum. Mes. Métrologie. 1, 9–39 (2001)Google Scholar
  11. 11.
    Krapez, J.-C., Lepoutre, F., Huttner, R., Gruss, C., Legrandjacques, L., Piriou, M., Gros, J., Gente, D., Hermosilla-lara, S., Joubert, P.Y., Placko, D.: La caméra photothermique (flying spot camera) II—applications industrielles, perspectives. Instrum. Mes. LaMétrologie. 1, 41–67 (2001)Google Scholar
  12. 12.
    Bodnar, J.L., Egée, M.: Wear crack characterization by photothermal radiometry. Wear 196, 54–59 (1996). CrossRefGoogle Scholar
  13. 13.
    Bodnar, J.L., Menu, C., Egée, M., Pigeon, P., Le Blanc, A.: Detection of wear cracks by photothermal radiometry. Wear 162–164, 590–592 (1993). CrossRefGoogle Scholar
  14. 14.
    Krapez, J.: Spatial resolution of the flying spot camera with respect to cracks and optical variations. AIP Conf. Proc. 463(377), 1–4 (1999)Google Scholar
  15. 15.
    Hermosilla-lara, S., Joubert, P.Y., Placko, D.: Enhancement of open-cracks detection using a principal component analysis/wavelet technique in photothermal nondestructive testing, pp. 41–46 (2002)Google Scholar
  16. 16.
    Joubert, P.-Y., Hermosilla-Lara, S., Placko, D., Lepoutre, F., Piriou, M.: Enhancement of open-crack detection in flying-spot photothermal non-destructive testing using physical effect identification. Quant. Infrared Thermogr. J. 3, 53–70 (2006). CrossRefGoogle Scholar
  17. 17.
    Legrandjacques, L., Krapez, J.-C., Lepoutre, F., Balageas, D.: Nothing but the cracks : a new kind of photothermal camera. In: 7 th European Conference on Non-destructive Testing (ECNDT) (1998)Google Scholar
  18. 18.
    Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning pulsed laser spot thermography. NDT E Int. 44, 216–225 (2011). CrossRefGoogle Scholar
  19. 19.
    Jiao, D., Shi, W., Liu, Z., Xie, H.: Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface. J. Nondestruct. Eval. 37, 1–10 (2018). CrossRefGoogle Scholar
  20. 20.
    Ciampa, F., Mahmoodi, P., Pinto, F., Meo, M.: Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 18(2), 609 (2018)CrossRefGoogle Scholar
  21. 21.
    Burrows, S.E., Dixon, S., Pickering, S.G., Li, T., Almond, D.P.: Thermographic detection of surface breaking defects using a scanning laser source. NDT E Int. 44, 589–596 (2011). CrossRefGoogle Scholar
  22. 22.
    Li, T., Almond, D.P., Rees, D.A.S., Weekes, B.: Crack imaging by pulsed laser spot thermography. J. Phys: Conf. Ser. 214(1), 012072 (2010). CrossRefGoogle Scholar
  23. 23.
    Li, T., Almond, D.P., Rees, D.A.S.: Crack imaging by scanning laser-line thermography and laser-spot thermography. Meas. Sci. Technol. 22, 035701 (2011). CrossRefGoogle Scholar
  24. 24.
    Beuve, S., Qin, Z., Roger, J.P., Holé, S., Boué, C.: Open cracks depth sizing by multi-frequency laser stimulated lock-in thermography combined with image processing. Sens. Actuators, A 247, 494–503 (2016). CrossRefGoogle Scholar
  25. 25.
    Schlichting, J., Ziegler, M., Maierhofer, C., Kreutzbruck, M.: Flying laser spot thermography for the fast detection of surface breaking cracks. In: 18th World Conf. Nondestruct. Test (2012)Google Scholar
  26. 26.
    Schlichting, J., Maierhofer, C., Kreutzbruck, M.: Crack sizing by laser excited thermography. NDT E Int. 45, 133–140 (2012). CrossRefGoogle Scholar
  27. 27.
    Fedala, Y., Streza, M., Sepulveda, F., Roger, J.P., Tessier, G., Boué, C.: Infrared lock-in thermography crack localization on metallic surfaces for industrial diagnosis. J. Nondestruct. Eval. 33, 335–341 (2014). CrossRefGoogle Scholar
  28. 28.
    Fedala, Y., Streza, M., Roger, J.-P., Tessier, G., Boué, C.: Open crack depth sizing by laser stimulated infrared lock-in thermography. J. Phys. D Appl. Phys. 47, 465501 (2014). CrossRefGoogle Scholar
  29. 29.
    Netzelmann, U.: Flying-spot lock-in thermography and its application to thickness measurement and crack detection. In: Proc. 2014 Int. Conf. Quant. InfraRed Thermogr. (2014).
  30. 30.
    Boué, C., Holé, S.: Open crack depth sizing by multi-speed continuous laser stimulated lock-in thermography. Meas. Sci. Technol. 28(6), 065901 (2017). CrossRefGoogle Scholar
  31. 31.
    de Uralde, P.L., Gorostegui-Colinas, E., Muniategui, A., Gorosmendi, I., Hériz, B., Ayuso, M., Sabalza, X.: A new method for surface crack detection by laser thermography based on Thermal Barrier effect. In: 14 th Quantitative InfraRed Thermography Conference (2018)Google Scholar
  32. 32.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: Flying laser spot thermography technique for the NDE of fibre metal laminates disbonds. Compos. Struct. 171, 63–76 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations