Advertisement

Nondestructive Testing of a Complex Aluminium-CFRP Hybrid Structure with EMAT and Thermography

  • Michael SchwarzEmail author
  • Mathias Schwarz
  • Simon Herter
  • Hans-Georg Herrmann
Article

Abstract

A new concept of an aluminium-CFRP (carbon-fibre-reinforced-polymer) hybrid structure with integrated thermoplastic layer is introduced in this work. The occurring interfaces between the three materials are characterised with flash thermography and ultrasonic testing with electromagnetic acoustic transducer (EMAT). Thermography is able to detect artificial integrated defects in inner layers of the CFRP component and to characterise the bonding quality of the interface between the CFRP and the thermoplastic layer. Additionally a POD model (probability of detection) provides the smallest detectable size a90/95 of gapping defects in the CFRP with 5.184 mm diameter. This work shows that a characterisation of the deeper interface between the aluminium and the thermoplastic layer is possible despite the small and complex geometry. Furthermore the quality of this bonding can be investigated independently of the EMAT’s position. By combining thermography and EMAT the whole complex hybrid structure with its interfaces can be characterised.

Keywords

Composite materials EMAT Interface Metal-CFRP-hybrid POD Thermography 

Notes

Acknowledgements

The authors gratefully acknowledge the funding by Deutsche Forschungsgemeinschaft (Grant No. HE 7079/1-2) and also thank their colleagues from Fraunhofer IZFP Saarbrücken and their research partners from wbk at Karlsruhe Institute of Technology and LKT at TU Dortmund.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Verkehrsclub Deutschland. CO2 emissions in automotive, https://www.vcd.org/themen/auto-umwelt/co2-grenzwert/ (2017). Accessed 28 Feb 18
  2. 2.
    Summa, J., Schwarz, M., Herrmann, H.G.: Evaluating the Severity of defects in a metal to CFRP hybrid-joint with in situ passive thermography damage monitoring. In: Proceedings 5th International Conference on Integrity, Reliability & Failure, IRF Porto, pp. 117–126 (2016)Google Scholar
  3. 3.
    Park, H., Choi, M., Park, J., Kim, W.: A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography. Infrared Phys. Technol. 62, 124–131 (2014)CrossRefGoogle Scholar
  4. 4.
    Schroeder, J.A., Ahmed, T., Chaudry, B., Shepard, S.: Non-destructive testing of structural composites and adhesively bonded composite joints: pulsed thermography. Composites A 33, 1511–1517 (2002)CrossRefGoogle Scholar
  5. 5.
    Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Röllig, M., Kunert, M.: Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations. Composites B 57, 35–46 (2014)CrossRefGoogle Scholar
  6. 6.
    Meola, C.: Infrared Thermography: Recent Advances and Future Trends. Bentham Science, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Howell, J.R., Pinar, M.M., Robert, S.: Thermal Radiation Heat Transfer, vol. 5. Taylor & Francis, New York (2010)CrossRefGoogle Scholar
  8. 8.
    Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing, pp. 15–32. Wiley & Sons Inc, New York (2001)Google Scholar
  9. 9.
    Schwarz, M., Summa, J., Herrmann, H.G.: Characterizing metal—CFRP hybrid structures by nondestructive testing methods. In: Proceedings 5th International Conference on Integrity, Reliability & Failure, IRF Porto, pp. 127–136 (2016)Google Scholar
  10. 10.
    Thermosensorik: Operating Manual—Infrared Camera Head QWIP 384 Dualband (2009)Google Scholar
  11. 11.
    Jian, X., Dixon, S., Edwards, R.S., Reed, J.: Coupling mechanism of electromagnetic acoustical transducers for ultrasonic generation. J. Acoust. Soc. Am. 119(5), 2693–2701 (2006)CrossRefGoogle Scholar
  12. 12.
    Salzburger, H.J., Niese, F., Dobmann, G.: EMAT pipe inspection with guided waves. Weld. World 56, 35–43 (2012)CrossRefGoogle Scholar
  13. 13.
    Luo, W., Rose, J.L.: Guided wave thickness measurement with EMATs. Insight-Non-Destr. Test. Cond. Monit. 45(11), 735–739 (2003)CrossRefGoogle Scholar
  14. 14.
    Petcher, P.A., Potter, M.D.G., Dixon, S.: A new electromagnetic acoustic transducer (EMAT) design for operation on rail. NDT&E Int. 65, 1–7 (2014)CrossRefGoogle Scholar
  15. 15.
    Petcher, P.A., Dixon, S.: Weld defect detection using PPM EMAT generated shear horizontal ultrasound. NDT&E Int. 74, 58–65 (2015)CrossRefGoogle Scholar
  16. 16.
    Le Crom, B., Castaings, M.: Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. Acoust. Soc. Am. 127(4), 2220–2230 (2010)CrossRefGoogle Scholar
  17. 17.
    Arun, K., Dhayalan, R., Balasubramaniam, K., Maxfield, B., Peres, P., Barnoncel, D.: An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection. AIP Conf. Proc. 1430(1), 82–86 (2012)Google Scholar
  18. 18.
    Castaings, M.: SH ultrasonic guided waves for the evaluation of interfacial adhesion. Ultrasonics 54, 1760–1775 (2014)CrossRefGoogle Scholar
  19. 19.
    Pérès, P., Barnoncel, D., Balasubramaniam, K., Castaings, M.: New experimental investigations of adhesive bonds with ultrasonic SH guided waves. In: 18th International Conference on Composite Materials (2011)Google Scholar
  20. 20.
    Gao, H., Ali, S., Lopez, B.: Efficient detection of delamination in multilayered structures using ultrasonic guided wave EMATs. NDT&E Int. 43, 316–322 (2010)CrossRefGoogle Scholar
  21. 21.
    Huang, S., Wei, Z., Zhao, W., Wang, S.: A new omni-directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects. Sensors 14(2), 3458–3476 (2014)CrossRefGoogle Scholar
  22. 22.
    Dixon, S., Edwards, C., Palmer, S.B.: Recent developments in the characterisation of aluminium sheets using electromagnetic acoustic transducers (EMATs). Insight-Non-Destr. Test. Cond. Monit. 44, 274–278 (2002)Google Scholar
  23. 23.
    Edwards, R.S., Dixon, S., Jian, X.: Characterisation of defects in the railhead using ultrasonic surface waves. NDT&E Int. 39, 468–475 (2006)CrossRefGoogle Scholar
  24. 24.
    Edwards, R.S., Jian, X., Fan, Y., Dixon, S.: Signal enhancement of the in-plane and out-of-plane Rayleigh wave components. Appl. Phys. Lett. 87(19), 194104 (2005)CrossRefGoogle Scholar
  25. 25.
    Neumann E. Ultraschallprüfung von austenitischen Plattierungen, Mischnähten und austenitischen Schweißnähten. Expertverlag, vol. 377, Chap. 5 (1995)Google Scholar
  26. 26.
    Annis, C., Gandossi, L., Martin, O.: Optimal sample size for probability of detection curves. Nucl. Eng. Des. 262, 98–105 (2013)CrossRefGoogle Scholar
  27. 27.
    Annis, C.: Statistical best-practices for building Probability of Detection (POD) models. R package mh1823, version 4.4.8 (2016). http://StatisticalEngineering.com/mh1823/
  28. 28.
    Herter, S.: Quantitative Untersuchungen von Klebverbindungen und Hybridbauteilen mittels geführter Ultraschallwellen an geometrisch komplexen Strukturen. Universität des Saarlandes, Bachelorarbeit (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Lightweight SystemsSaarland UniversitySaarbrückenGermany
  2. 2.Fraunhofer Institute for Nondestructive TestingSaarbrückenGermany

Personalised recommendations