Advertisement

A Procedure for the Structural Identification of Masonry Towers

  • Milorad PavlovicEmail author
  • Sebastiano Trevisani
  • Antonella Cecchi
Article

Abstract

Historic masonry towers, as well as bell towers, minarets and chimneys, represent an important part of the Mediterranean basin architectural heritage. Widely spread out on the Italian peninsula, the bell towers reflect cultural, social and religious aspects of the communities, thus, their conservation remains an open challenge for scientists, governments and local communities. The seismic behavior of slender masonry structures is, generally, characterized by the combination, of the static vertical loads with dynamic loading. However, the determination of the structural behavior of masonry structures is always a complex challenge due to the material inhomogeneity, manufacturing imperfections, geometric configuration or structural interaction between the layers in the case multi-leaf masonry structures. In this research, an expeditious and low-cost procedure for the structural identification of historic masonry towers is proposed. The procedure, based on experimental measurements and numerical modeling, aims at the estimation of the average mechanical characteristics under service loads. In particular, the procedure proposes the acquisition of the fundamental frequency by means of a single compact digital tromograph and successive finite element model calibration starting from the experimental data. The whole identification procedure has been at first verified on an elementary laboratory specimen, then applied on the historic bell tower of Basilica dei Frari located in the historic city center of Venice.

Keywords

Experimental measurements Modal analysis FEM Historic architecture Masonry Bell tower 

References

  1. 1.
    Acito, M., Bocciarelli, M., Chesi, C., Milani, G.: Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: numerical insight. Eng. Struct. 72, 70–91 (2014).  https://doi.org/10.1016/j.engstruct.2014.04.026 CrossRefGoogle Scholar
  2. 2.
    Binda, L., Gatti, G., Mangano, G., Poggi, C., Sacchi Landriani, G.: The collapse of the Civic Tower of Pavia: a survey of the materials and structure. Mason. Int. 6, 11–20 (1992)Google Scholar
  3. 3.
    Cornaro, F.: Notizie storiche delle chiese e monasteri di Venezia, e di Torcello tratte dalle chiese veneziane, e torcellane illustrate da Flaminio Corner. Stamperia del Seminario, Padova (1758)Google Scholar
  4. 4.
    Zanetti, V.: Piccola guida di Murano e delle sue Officine. Naratovich, Venezia (1869)Google Scholar
  5. 5.
    Levi, C.A.: I campanili di Venezia, notizie storiche. Ferdinando Ongaria Editore, Venezia (1890)Google Scholar
  6. 6.
    Antonelli, C., Caselli, C., Arcaini, R.: Relazione sullo stato del Campanile di S. Stefano presentata all’ Ill.o signor sindaco dagli ingegneri architetti Costanzo Antonelli, Crescentino Caselli ed architetto Raineri Arcaini. Officine grafiche Ferrari, Venezia (1902)Google Scholar
  7. 7.
    Donghi, D.: Progetto per la ricostruzione del campanile di San Marco a Venezia. Iuav-Archivio Progetti, Venezia (1902–1912)Google Scholar
  8. 8.
    Beltrami, L.: Resoconto delle indagini e degli studi per la ricostruzione del campanile di San Marco dal marzo al maggio 1903. Tipografia Umberto Allegretti, Milano (1903)Google Scholar
  9. 9.
    Ongaro, M.: Come è caduto il campanile di San Marco. Nutini, Venezia (1904)Google Scholar
  10. 10.
    Fradeletto, A.: Il campanile di San Marco riedificato: studi, ricerche, relazioni. Carlo Ferrari, Venezia (1912)Google Scholar
  11. 11.
    Lionello, A.: Tecniche costruttive, dissesti e consolidamenti dei campanili di Venezia. Ministero per i beni e le attività culturali, Soprintendenza per i beni architettonici e paesaggistici di Venezia e Laguna, Corbo e Fiore, Venezia (2011)Google Scholar
  12. 12.
    Modena, C., Valluzzi, M.R., Tongini Folli, R., Binda, L.: Design choices and intervention techniques for repairing and strengthening of the Monza cathedral bell-tower. Constr. Build. Mater. 16, 385–395 (2002).  https://doi.org/10.1016/S0950-0618(02)00041-7 CrossRefGoogle Scholar
  13. 13.
    Carpinteri, A., Invernizzi, S., Lacidogna, G.: In situ damage assessment and non linear modelling of a historical masonry tower. Eng. Struct. 27, 387–395 (2005).  https://doi.org/10.1016/j.engstruct.2004.11.001 CrossRefGoogle Scholar
  14. 14.
    Barsotti, R., Bennati, S., Nardini, L., Salvatore, W.: Characterisation of the mechanical behaviour of the bell tower of the cathedral of San Miniato (Pisa). WIT Trans. Built Environ. 98, 343–355 (2008).  https://doi.org/10.2495/SU080341 CrossRefGoogle Scholar
  15. 15.
    Anzani, A., Binda, L., Carpinteri, A., Invernizzi, S., Lacidogna, G.: A multilevel approach for the damage assessment of Historic masonry towers. J. Cult. Herit. 11, 459–470 (2010).  https://doi.org/10.1016/j.culher.2009.11.008 CrossRefGoogle Scholar
  16. 16.
    Lorenzoni, F., Valluzzi, M.R., Modena, C., Simonato, E., Casarin, F., Lionello, A.: Settlement induced damage modelling of historical buildings: the Bell tower of the “Basilica dei Frari” in Venice. Adv. Mater. Res. 133–134, 561–566 (2010).  https://doi.org/10.4028/www.scientific.net/AMR.133-134.561 CrossRefGoogle Scholar
  17. 17.
    Foti, D., Diaferio, M., Giannocaro, N.I., Mongelli, M.: Ambient vibration testing, dynamic identification and model updating of a historic tower. NDT&E Int. 47, 88–95 (2012).  https://doi.org/10.1016/j.ndteint.2011.11.009 CrossRefGoogle Scholar
  18. 18.
    Ewins, D.J.: Modal Testing: Theory, Practice and Application. Research Studies Press LTD, Letchworth (1984)Google Scholar
  19. 19.
    Delli Carri, A., Weekes, B., Di Maio, D., Ewins, D.J.: Extending modal testing technology for model validation of engineering structures with sparse nonlinearities: a first case study. Mech. Syst. Signal Process. 84, 97–115 (2017).  https://doi.org/10.1016/j.ymssp.2016.04.012 CrossRefGoogle Scholar
  20. 20.
    Papadopoulos, M., Beeumen, R.V., François, S., Degrande, G., Lombaert, G.: Modal characteristics of structures considering dynamic soil-structure interaction effects. Soil Dyn. Earthq. Eng. 105, 114–118 (2018).  https://doi.org/10.1016/j.soildyn.2017.11.012 CrossRefGoogle Scholar
  21. 21.
    Gentile, C., Saisi, A.: Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 21, 1311–1321 (2007).  https://doi.org/10.1016/j.conbuildmat.2006.01.007 CrossRefGoogle Scholar
  22. 22.
    Teza, G., Pesci, A., Trevisani, S.: Multisensor surveys of tall historical buildings in high seismic hazard areas before and during a seismic sequence. J. Cult. Herit. 16(3), 255–266 (2015).  https://doi.org/10.1016/j.culher.2014.06.008 CrossRefGoogle Scholar
  23. 23.
    Jacobsen, N.J., Thourhage, O.: Data acquisition systems for Operational Modal Analysis. In: Proceedings of the 3rd IOMAC, 4–6 May 2009, Porto Novo, Italy, pp. 215–222 (2009)Google Scholar
  24. 24.
    Masjedian, M.H., Keshmiri, M.: A review on Operational Modal Analysis researches: classification of methods and applications. In: Proceedings of the 3rd IOMAC, 4–6 May 2009, Porto Novo, Italy, 677–686 (2009)Google Scholar
  25. 25.
    Foti, D.: Non-destructive techniques and monitoring for the evolutive damage detection of an ancient masonry structure. Key Eng. Mater. 628, 168–177 (2015).  https://doi.org/10.4028/www.scientific.net/KEM.628.168 CrossRefGoogle Scholar
  26. 26.
    Diaferio, D., Foti, D., Gentile, C., Giannoccaro, N.I., Saisi, A.: Dynamic testing of a historical slender building using accelerometers and radar. In: Proceedings of the 6th IOMAC, 12–14 May 2015, Giyon, Spain, pp. 129–130 (2015)Google Scholar
  27. 27.
    Foti, D., Diaferio, M., Giannoccaro, N.I., Ivorra, S.: Structural Identification and numerical models for slender historic structures. In: Asteris, P., Plevris, V. (eds.) Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures. Engineering Science Reference, pp. 674–703. (2015).  https://doi.org/10.4018/978-1-4666-8286-3.ch023 CrossRefGoogle Scholar
  28. 28.
    David-West, O.S., Wang, J., Cooper, R.: Finite element model updating of a thin wall enclosure under impact excitation. Appl. Mech. Mater. 24(25), 337–342 (2010).  https://doi.org/10.4028/www.scientific.net/AMM.24-25.337 CrossRefGoogle Scholar
  29. 29.
    Diaferio, M., Foti, D., Giannoccaro, N.I., Ivorra, S.: Optimal model through identified frequencies of a masonry building structure with wooden floors. Int. J. Mech. 8(1), 282–288 (2014)Google Scholar
  30. 30.
    Mottershead, J.E., Friswell, M.I.: Model updating in structural dynamics: a survey. J. Sound Vib. 22(2), 347–375 (1993).  https://doi.org/10.1006/jsvi.1993.1340 CrossRefzbMATHGoogle Scholar
  31. 31.
    Mares, C., Mottershead, J.E., Friswell, M.I.: Results obtained by minimising natural-frequency errors and using physical reasoning. Mech. Syst. Signal Process. 17(1), 39–46 (2003).  https://doi.org/10.1006/mssp.2002.1537 CrossRefGoogle Scholar
  32. 32.
    Nalitolela, N.G., Penny, J.E.T., Friswell, M.I.: A mass or stiffness addition technique for structural parameter updating. Int. J. Anal. Exp. Modal Anal. 7(3), 157–168 (1992)Google Scholar
  33. 33.
    Reh, S., Beley, J.D., Mukherjee, S., Khor, E.H.: Probabilistic finite element analysis using ANSYS. Struct. Saf. 28, 17–43 (2006).  https://doi.org/10.1016/j.strusafe.2005.03.010 CrossRefGoogle Scholar
  34. 34.
    Zapico, J.L., Gonzalez, M.P., Friswell, M.I., Taylor, C.A., Crewe, A.J.: Finite element model updating of a small scale bridge. J. Sound Vib. 268(5), 993–1012 (2003).  https://doi.org/10.1016/S0022-460X(03)00409-7 CrossRefGoogle Scholar
  35. 35.
    Bayraktar, A., Türker, T., Sevim, B., Altunişik, A.C., Yildirim, F.: Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test. J. Nondestr. Eval. 28, 37–47 (2009).  https://doi.org/10.1007/s10921-009-0045-9 CrossRefGoogle Scholar
  36. 36.
    Diaferio, M., Foti, D., Potenza, F.: Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Eng. Struct. 156, 433–442 (2018)CrossRefGoogle Scholar
  37. 37.
    Bonnefoy-Claudet, S., Cotton, F., Bard, P.: The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Sci. Rev. 79(3–4), 205–227 (2006)CrossRefGoogle Scholar
  38. 38.
    Tromino, http://moho.world/en/tromino/, Accessed 21 March, 2018
  39. 39.
    Trevisani, S., Boaga, J., Agostini, L., Galgaro, A.: Insights into bedrock surface morphology using low-cost passive seismic surveys and integrated geostatistical analysis. Sci. Total Environ. 578, 186–202 (2017).  https://doi.org/10.1016/j.scitotenv.2016.11.041 CrossRefGoogle Scholar
  40. 40.
    Boaga, J., Renzi, S., Deiana, R., Cassiani, G.: Soil damping influence on seismic ground response: a parametric analysis for weak to moderate ground motion. Soil Dyn. Earthq. Eng. 79, 71–79 (2015).  https://doi.org/10.1016/j.soildyn.2015.09.002 CrossRefGoogle Scholar
  41. 41.
    D’Amico, V., Picozzi, M., Baliva, F., Albarello, D.: Ambient noise measurements for preliminary site-effects characterization in the Urban area of Florence, Italy. Bull. Seismol. Soc. Am. 98(3), 1373–1388 (2008).  https://doi.org/10.1785/0120070231 CrossRefGoogle Scholar
  42. 42.
    Seht, M.I., Wohlenberg, J.: Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Am. 89(1), 250–259 (1999)Google Scholar
  43. 43.
    Mucciarelli, M.: Ambient noise measurements on soil and buildings. Bull. Earthq. Eng. 8(3), 481–482 (2010).  https://doi.org/10.1007/s10518-010-9179-5 CrossRefGoogle Scholar
  44. 44.
    Masi, A., Vona, M.: Experimental and numerical evaluation of the fundamental period of undamaged and damaged RC framed buildings. Bull. Earthq. Eng. 8(3), 643–656 (2009).  https://doi.org/10.1007/s10518-009-9136-3 CrossRefGoogle Scholar
  45. 45.
    Massa, M., Marzorati, S., Ladina, C., Lovati, S.: Urban seismic stations: soil–structure interaction assessment by spectral ratio analyses. Bull. Earthq. Eng. 8(3), 723–738 (2009).  https://doi.org/10.1007/s10518-009-9138-1 CrossRefGoogle Scholar
  46. 46.
    Castellaro, S., Perricone, L., Bartolomei, M., Isani, S.: Dynamic characterization of the Eiffel tower. Eng. Struct. 126, 628–640 (2016).  https://doi.org/10.1016/j.engstruct.2016.08.023 CrossRefGoogle Scholar
  47. 47.
    Aldreghetti, I., Baraldi, D., Boscato, G., Cecchi, A., Massaria, L., Pavlovic, M., Reccia, E., Tofani, I.: Multi-leaf masonry walls with full, damaged and consolidated infill: experimental and numerical analyses. Key Eng. Mater. 747, 488–495 (2017).  https://doi.org/10.4028/www.scientific.net/KEM.747.488 CrossRefGoogle Scholar
  48. 48.
    Gottardi, G., Lionello, A., Marchi, M., Rossi, P.P.: Monitoring-driven design of a multiphase intervention for the preservation of the Frari bell tower in Venice. Riv. Italiana Geotec. 49(1), 45–64 (2015)Google Scholar
  49. 49.
    Lorenzoni, F., Valluzzi, M.R., Modena, C., Simonato, E., Casarin, F., Lionello, A.: Settlement induced damage modelling of historical buildings: the bell tower of the “Basilica dei Frari” in Venice. Adv. Mater. Res. 133(134), 561–566 (2010).  https://doi.org/10.4028/www.scientific.net/AMR.133-134.561 CrossRefGoogle Scholar
  50. 50.
    Lionello, A., Cavaggioni, I., Rossi, P.P., Rossi, C., Modena, C., Casarin, F., Marchi, G., Gottardi, G., Ragazzini, A.: Preliminary investigation and monitoring for the design of a strengthening intervention of the Frari basilica in Venice. SAHC 2004 Structural Analysis of Historic Constructions, Possibilities of Numerical and Experimental Techniques. Proceedings of the fourth International Seminar on Structural Analysis of Historical Structures, 10–13 November 2004, Padova, Italy, pp. 1323–1333 (2005)Google Scholar
  51. 51.
    Pavlovic, M., Baraldi, D., Reccia, E., Tralli, A.: Modal analysis of Frari historical bell tower in Venice: A comparison between detailed and simplified models. CIVIL-COMP 2015, The Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, at Prague (Czech Republic) In: Proceedings of the fifteenth international conference on civil, structural and environmental engineering computing, vol. 108, pp. 1–19 (2015)  https://doi.org/10.4203/ccp.108.52
  52. 52.
    Pavlovic, M., Trevisani, S., Cecchi, A.: Experimental and numerical analysis of a historical bell tower. In: ICACCE 2016: 18th International Conference on Architectural, Civil and Construction Engineering, December 19–20, Istanbul, Turkey. World Academy of Science, Engineering and Technology. Int. J. Civil Environ. Struct. Constr. Archit. Eng. 10(12), 1500–1507. (2016) http://waset.org/publications/10005836

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ArchitectureAlanya Hamdullah Emin Paşa UniversityAlanyaTurkey
  2. 2.Department of Architecture, Construction and ConservationUniversity IUAV of VeniceVeniceItaly

Personalised recommendations