Advertisement

Detection of Internal Defects in Carbon Fiber Reinforced Plastic Slabs Using Background Thermal Compensation by Filtering and Support Vector Machines

  • Juan-Camilo Forero-Ramírez
  • Andrés-David Restrepo-Girón
  • Sandra-Esperanza Nope-RodríguezEmail author
Article

Abstract

Composite materials, such as Carbon-Fiber-Reinforced Plastic (CFRP), are used in many industries because they have advantages over more traditional materials. However, CFRPs may have structural flaws, because mechanical stress or manufacturing process, that represent an important risk for the safe operation of CFRP-made structures. This study analyzes the performance in detection of internal defects, by means of training and operating Support Vector Machines (SVM) with thermal contrast information obtained from Background Thermal Compensation by Filtering (BTCF) technique. IR images were obtained by using an Active Pulsed Thermography (PT) system, under two different conditions, for inspection of a 20 × 20 cm CFRP slab with 25 squared Teflon insertions as emulated defects. Detection results show that the combination of BTCF contrast technique and SVM classifier leads to a greater sensibility (22 of 23 defects considered) than other combinations of thermal contrast, feature selection and classifiers proposed in previous works.

Keywords

Infrared thermography (IT) Support vector machines (SVM) Background thermal compensation by filtering (BTCF) Feature selection Carbon fiber reinforced plastic (CFRP) 

Notes

Acknowledgements

The authors would like to express their gratitude to the multipolar infrared vision (MIVIM) research group at the University of Laval in Quebec, Canada, for providing their facilities to produce the thermal images used in this study.

References

  1. 1.
    Ibarra-Castanedo, C., et al.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20(1), 1–31 (2009)CrossRefGoogle Scholar
  2. 2.
    Ibarra-Castanedo, C., Tarpani, J., Maldague, X.: Nondestructive testing with thermography. Eur. J. Phys. 34(6), 91–109 (2013)CrossRefGoogle Scholar
  3. 3.
    Valdés, M., Inamura, M., Valera, J., Yao, L.: Multidimensional filtering approaches for pre-processing thermal images. Multidimens. Syst. Signal Process. 17(4), 299–325 (2006)CrossRefGoogle Scholar
  4. 4.
    Alsaadawi, Z., Netzelmann, U.,: Spatio-temporal filtering of active thermography data for noise reduction and data compression. In Proceedings of 10th International Conference on Quantitative InfraRed Thermography (QIRT 2010). Québec, Canada (2010)Google Scholar
  5. 5.
    Restrepo-Girón, A., Loaiza-Correa, H.: New advances in multidimensional processing for thermal image quality enhancement. In: Santhi, V. (ed.) Recent advances in applied thermal imaging for industrial applications, pp. 202–248. IGI Global, Hershey PA (2017)CrossRefGoogle Scholar
  6. 6.
    García, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Benítez, H., Loaiza, H., Caicedo, E.,: Termografía activa pulsada en inspección de materiales. Técnicas avanzadas de procesado [Active pulsed thermography for materials inspection. Advanced processing techniques]. Universidad del Valle—Pontificia Universidad Javeriana. Cali, Colombia (2011)Google Scholar
  8. 8.
    Madruga, F., Ibarra-Castanedo, C., Conde, O., López-Higuera, J., Maldague, X.: Infrared thermography processing based on higher-order statistics. NDT&E Intern. 43(8), 661–666 (2010)CrossRefGoogle Scholar
  9. 9.
    Roche, J., Leroy, F., Balageas, D.: Images of TSR coefficients: a simple way for rapid and efficient detection of discontinuities. Mater. Eval. 72(1), 73–82 (2013)Google Scholar
  10. 10.
    Bishop, C.M.: Pattern recognition and machine learning. Springer, Cambridge (2006)zbMATHGoogle Scholar
  11. 11.
    Peeters, J., Ibarra-Castanedo, C., Sfarra, S., Maldague, X., Dirckx, J., Steenackers, G.: Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT&E Intern. 87, 119–123 (2017)CrossRefGoogle Scholar
  12. 12.
    Junyan, L., Qingju, T., Xun, L., Yang, Y.: Research on the quantitative analysis of subsurface defects for non-destructive testing by lock-in thermography. NDT&E Intern. 45(1), 104–110 (2012)CrossRefGoogle Scholar
  13. 13.
    Benítez, H., Loaiza, H., Caicedo, E., Ibarra-Castanedo, C., Bendada, A., Maldague, X.: Defect characterization in infrared non-destructive testing with learning machines. NDT&E Intern. 42(7), 630–643 (2009)CrossRefGoogle Scholar
  14. 14.
    Darabi, A., Maldague, X.: Neural network based defect detection and depth estimation in TNDE. NDT&E Intern. 35(3), 165–175 (2002)CrossRefGoogle Scholar
  15. 15.
    Luo, Y., Yan, Z., Wang, K., Wang, L.,: Infrared Image Registration of Damage in the Aircraft Skin Based on Lie Group Machine Learning. In: 26th Chinese Control and Decision Conference (CCDC) (2014)Google Scholar
  16. 16.
    Dudzik, S.: Analysis of the accuracy of a neural algorithm for defect depth estimation using PCA processing from active thermography data. Infrared Phys. Technol. 56, 1–7 (2013)CrossRefGoogle Scholar
  17. 17.
    Restrepo, A., Loaiza, H.: Background thermal compensation by filtering for contrast enhancement in active thermography. J. Nondestruct. Eval. 35(1), 20 (2016)CrossRefGoogle Scholar
  18. 18.
    Jimenez, L., Rengifo, P.: Al interior de una máquina de soporte vectorial [Inside of a Support Vector Machine]. Rev. Ciencias Univ. del Val. 14, 73–85 (2010)Google Scholar
  19. 19.
    Riobó, V.: Reconocimiento de localizaciones mediante máquinas de soporte vectorial [Locations recognition by support vector macines]. Dissertation, Universidad Carlos III, Madrid (2012)Google Scholar
  20. 20.
    Ledezma, W.: Máquinas de Soporte Vectorial (SVM) para la Detección de Nódulos Pulmonares En Tomografía Axial Computarizada (TAC) [Support Vector Machines (SVM) for Detection of Pulmonary Nodules in Computerized Axial Tomography]. Dissertation, Pontificia Universidad Javeriana, Bogotá (2013)Google Scholar
  21. 21.
    Ratnayake, R., Hicks, C., Akbari, M.: A SVM based Method to Detect Color Shift Defects in IC Packages. In: APR Conference on Machine Vision Applications. Tokyo, Japan (2007)Google Scholar
  22. 22.
    Su, L., Shi, T., Xu, Z., Lu, X., Liao, G.: Defect inspection of flip chip solder bumps using an ultrasonic transducer. Sensors (open access). 13, 16281–16291 (2013)CrossRefGoogle Scholar
  23. 23.
    Ruedas, C.: Detección Multiusuario para DS-CDMA basado en SVM [Multiuser Detection for DS-CDMA based on SVM], Dissertation, Universidad de SevillaGoogle Scholar
  24. 24.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juan-Camilo Forero-Ramírez
    • 1
  • Andrés-David Restrepo-Girón
    • 1
  • Sandra-Esperanza Nope-Rodríguez
    • 1
    Email author
  1. 1.Escuela de Ingeniería Eléctrica y Electrónica, Universidad del ValleCaliColombia

Personalised recommendations