Advertisement

Crack Detection in Concrete Parts Using Vibrothermography

  • Yu Jia
  • Lei TangEmail author
  • Binhua Xu
  • Shenghang Zhang
Article

Abstract

This study investigates the use of vibrothermography to detect cracks in concrete parts, developing acoustic excitation devices (sonic and ultrasonic and low- and high-power excitation devices) and examining the influences of excitation frequency, power, and pressure on the ability to detect cracks. Experimental results demonstrate that this inspection technique can suitably detect concrete cracks: Ultrasound at frequencies from 20 to 100 kHz could be used to excite concrete cracks with notable temperature rise; coarse aggregates in concrete do not interfere with the ability to detect cracks; high-power ultrasound enhances crack detection though intense scattering of attenuation that could be induced by coarse aggregates. Moreover, the stimulus horn designed as part of this study can input ultrasound at high power into concrete parts without damaging the contact surface, while the custom-made pressure loading sleeve can steadily exert force on the transducer during excitation; the optimal force exerted on KMD ultrasonic transducers with a rated power of 50 W is ~ 1500 N, which can make the transducer output enough power to detect cracks.

Keywords

Acoustic excitation device Concrete material Crack detection Vibrothermography 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51527811) and the National Key Research and Development Plan of China (Grant No. 2016YFC0401610).

References

  1. 1.
    Renshaw, J., Chen, J.C., Holland, S.D., Thompson, R.B.: The sources of heat generation in vibrothermography. NDT and E Int. 44(8), 736–739 (2011).  https://doi.org/10.1016/j.ndteint.2011.07.012 CrossRefGoogle Scholar
  2. 2.
    Khmelev, V.N., Barsukov, R.V., Slivin, A.N., Tchyganok, S.N.: System of phase-locked-loop frequency control of ultrasonic generators. In: Proceedings 2nd Annual Siberian Russian Student Workshop on Electron Devices and Materials (2001)  https://doi.org/10.1109/SREDM.2001.939147
  3. 3.
    Cho, J.W., Seo, Y.-C., Jung, S.-H., Jung, H.-K.: Defect detection within a pipe using ultrasound excited thermography. Nucl. Eng. Technol. 39(5), 637–646 (2007).  https://doi.org/10.5516/NET.2007.39.5.637 CrossRefGoogle Scholar
  4. 4.
    Mian, A., Han, X., Islam, S., Newaz, G.: Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique. Compos. Sci. Technol. 64(5), 657–666 (2004).  https://doi.org/10.1016/j.compscitech.2003.07.005 CrossRefGoogle Scholar
  5. 5.
    Guo, X., Vavilov, V.: Crack detection in aluminum parts by using ultrasound-excited infrared thermography. Infrared Phys. Technol. 61, 149–156 (2013).  https://doi.org/10.1016/j.infrared.2013.08.003 CrossRefGoogle Scholar
  6. 6.
    Plum, R., Ummenhofer, T.: Use of ultrasound excited thermography applied to massive steel components emerging crack detecting methodology. J. Bridge Eng. 18(6), 455–463 (2013).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000355 CrossRefGoogle Scholar
  7. 7.
    Piau, J.-M., Bendada, A., Maldague, X., Legoux, J.-G.: Nondestructive testing of open microscopic cracks in plasma-sprayed-coatings using ultrasound excited vibrothermography. Nondestruct. Test. Eval. 23(2), 109–120 (2008).  https://doi.org/10.1080/10589750701775817 CrossRefGoogle Scholar
  8. 8.
    De Belie, N., De Muynck, W.: Crack repair in concrete using biodeposition. In: Proceedings of the 2nd International Conference ov Concrete Repair, Rehabilitation and Retrofitting, pp. 291–292 (2008)Google Scholar
  9. 9.
    Wan, K.T., Leung, C.K.Y.: Fiber optic sensor for the monitoring of mixed mode cracks in structures. Sens. Actuators A 135(2), 370–380 (2007).  https://doi.org/10.1016/j.sna.2006.08.002 CrossRefGoogle Scholar
  10. 10.
    Philippidis, T.P., Aggelis, D.G.: Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43(7), 584–595 (2005).  https://doi.org/10.1016/j.ultras.2004.12.001 CrossRefGoogle Scholar
  11. 11.
    Chaix, J.F., Garnier, V., Corneloup, G.: Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation. Ultrasonics 44(2), 200–210 (2006).  https://doi.org/10.1016/j.ultras.2005.11.002 CrossRefGoogle Scholar
  12. 12.
    Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2(4), 512–537 (1961).  https://doi.org/10.1063/1.1703737 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Homma, C., Rothenfusser, M., Baumann, J., Shannon, R.: Study of the heat generation mechanism in acoustic thermography. Proc. AIP Conf. 820, 566 (2006).  https://doi.org/10.1063/1.2184578 CrossRefGoogle Scholar
  14. 14.
    Umar, M.Z., Vavilov, V., Abdullah, H., Ariffin, A.K.: Ultrasonic infrared thermography in non-destructive testing: a review. Rus. J. Nondestruct. Test. 52(4), 212–219 (2016)CrossRefGoogle Scholar
  15. 15.
    Parrini, L.: Design of advanced ultrasonic transducers for welding devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1632–1639 (2001).  https://doi.org/10.1109/58.971714 CrossRefGoogle Scholar
  16. 16.
    Volkov, S.S., Kholopov, Y.V.: Technology and equipment for ultrasound welding structures made of polymer-based composite materials. Weld. Int. 12(5), 400–403 (1998)CrossRefGoogle Scholar
  17. 17.
    Millner, R.: Ultraschalltechnik. Physik-Verlag, Belin, Weinheim (1987)Google Scholar
  18. 18.
    GB178-1977 (2006) Standard Sand for Cement Strength Test. China Standard Press, BeijingGoogle Scholar
  19. 19.
    Lei, T., Hong, L., Yu, J., Ling, G.: Study of an acoustic field simulation of a temperature field excited by ultrasonic waves through a concrete specimen. Insight 59(6), 305–310 (2017)CrossRefGoogle Scholar
  20. 20.
    Garnier, V., Piwakowski, B., Abraham, O., Villain, G., Payan, C., Chaix, J.F.: Acoustic techniques for concrete evaluation: improvements, comparisons and consistency. Constr. Build. Mater. 43, 598–613 (2013).  https://doi.org/10.1016/j.conbuildmat.2013.01.035 CrossRefGoogle Scholar
  21. 21.
    Hiremath, S.R., Mahaoatra, D.R., Srinivasan, S.: Detection of crack in metal plate by thermo sonic wave based detection using FEM. Exp. Stroke Transl. Med. 1(1), 12–18 (2012)Google Scholar
  22. 22.
    Zweschper, T., Dillenz, A., Riegert, G., Scherling, D., Busse, G.: Ultrasound excited thermography using frequency modulated elastic waves. Insight 45(3), 178–182 (2003)CrossRefGoogle Scholar
  23. 23.
    Chen, Y.-C., Wu, S., Chen, P.-C.: The impedance-matching design and simulation on high power elctro-acoustical transducer. Sens. Actuators, A 115(1), 38–45 (2004).  https://doi.org/10.1016/j.sna.2004.01.063 CrossRefGoogle Scholar
  24. 24.
    Inoue, T., Sasaki, T., Miyama, T., Sugiuchi, K.: Equivalent circuit analysis for Tonpilz piezoelectric transducer. IEICE Trans. E70(10), 909–917 (1987)Google Scholar
  25. 25.
    Martin, G.E.: On the theory of segmented electromechanical systems. J. Acoust. Soc. Am. 36(7), 1366–1370 (1964).  https://doi.org/10.1121/1.1919209 CrossRefGoogle Scholar
  26. 26.
    Chen, Z.: Research of Ultrasonic Generator. Dissertation, Zhejiang University (2007)Google Scholar
  27. 27.
    Lu, J., Han, X., Newaz, G., Favro, L.D., Thomas, R.L.: Study of the effect of crack closure in sonic infrared imaging. Nondestruct. Test. Eval. 22(2–3), 127–135 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Jia
    • 1
    • 2
    • 4
  • Lei Tang
    • 1
    • 4
    Email author
  • Binhua Xu
    • 1
    • 3
    • 4
  • Shenghang Zhang
    • 1
    • 4
  1. 1.Nanjing Hydraulic Research InstituteNanjingChina
  2. 2.College of Water Conservancy and Hydropower EngineeringHohai UniversityNanjingChina
  3. 3.College of Civil and Transportation EngineeringHohai UniversityNanjingChina
  4. 4.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringNanjingChina

Personalised recommendations