Advertisement

Pulsed Phase Thermography Approach for the Characterization of Delaminations in CFRP and Comparison to Phased Array Ultrasonic Testing

  • E. D’Accardi
  • F. Palano
  • R. TamborrinoEmail author
  • D. Palumbo
  • A. Tatì
  • R. Terzi
  • U. Galietti
Article

Abstract

Pulsed phase thermography (PPT) is a well-established algorithm used for processing thermographic data in frequency domain with the aim to extract information about the defect size and depth. However, few works demonstrated the capability of PPT technique in defects evaluation in real components. The aim of this work is the assessment of capability of PPT technique in determining delaminations in CFRP components used in aeronautics. The component chosen for implementing the technique has a non-uniform geometry and the defects inside it are not simulated, but they are real and generated during the production process. The specimen has been investigated through the application of both the ultrasonic technique and the thermographic one. Thermographic phase images elaborated with a suitable computational processing have been compared with Ultrasonic C-scan images and, the agreement between the location and depth of defects has been verified. Besides, the ultrasonic technique has been used to validate the PPT results.

Keywords

CFRP Ultrasonic phased array test Pulsed phase thermography Delamination 

Notes

Acknowledgements

This work was supported by the DiTECO project (Defects, damage and repair TEchniques in the production processes of large structures in COmposite - PON3 Axis I Title III) funded by MIUR.

References

  1. 1.
    Jolly, M., Prabhakar, A., Sturzu, B., Hollstein, K., Singh, R., Thomas, S., Shaw, A.: Review of non-destructive testing (NDT) techniques and their applicability to thick walled composites. Proc. CIRP 38, 129–136 (2015).  https://doi.org/10.1016/j.procir.2015.07.043 CrossRefGoogle Scholar
  2. 2.
    Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Proc. Struct. Integr. 1, 50–57 (2016).  https://doi.org/10.1016/j.prostr.2016.02.008 CrossRefGoogle Scholar
  3. 3.
    Boychuk, A.S., Generalov, A.S., Stepanov, A.V.: Nondestructive testing of FRP by using phased array ultrasonic technology. In: Proceedings of the 12th International Conference of the Slovenian Society for Non-Destructive Testing, 4–6 Sept 2013, Portoroz, Slovenia (2013)Google Scholar
  4. 4.
    Scarponi, C., Briotti, G.: Ultrasonic technique for the evaluation of delaminations on CFRP, GFRP, KFRP composite materials. Compos. B Eng. 31(3), 237–243 (2000).  https://doi.org/10.1016/S1359-8368(99)00076-1 CrossRefGoogle Scholar
  5. 5.
    Carofalo, A., Dattoma, V., Palano, F., Panella, F. W.: ND testing advances on CFRP with ultrasonic and thermal techniques. In: Proceedings of the 16th European Conference on Composite Materials, ECCM 2014 22–26 June http://www.scopus.com (2014).
  6. 6.
    Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: physical principles, theory and data processing. NDT E Int. 73, 28–52 (2015).  https://doi.org/10.1016/j.ndteint.2015.03.003 CrossRefGoogle Scholar
  7. 7.
    Zheng, K., Chang, Y.S., Yao, Y.: Defect detection in CFRP structures using pulsed thermographic data enhanced by penalized least squares methods. Compos. B Eng. 79, 351–358 (2015).  https://doi.org/10.1016/j.compositesb.2015.04.049 CrossRefGoogle Scholar
  8. 8.
    Shepard, S.M.: Advances in pulsed thermography. Proc. SPIE 4360, 511–515 (2001).  https://doi.org/10.1117/12.421032 CrossRefGoogle Scholar
  9. 9.
    Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Ahmed, T., Wang, D.: Enhancement and reconstruction of thermographic NDT data. Proc. SPIE 4710, 531–535 (2002).  https://doi.org/10.1117/12.459603 CrossRefGoogle Scholar
  10. 10.
    Maldague, X., Galmiche, F., Ziadi, A.: Advances in pulsed phase thermography. Infrared Phys. Technol. 43(3–5), 175–181 (2002).  https://doi.org/10.1016/S1350-4495(02)00138-X CrossRefGoogle Scholar
  11. 11.
    Ibarra-Castanedo, C., Maldague, X.: Pulsed phase thermography reviewed. Quant. InfraRed Thermogr. J. 1(1), 47–70 (2004).  https://doi.org/10.3166/qirt.1.47-70 CrossRefGoogle Scholar
  12. 12.
    Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58(4), 521–528 (2002).  https://doi.org/10.1016/S0263-8223(02)00161-7 CrossRefGoogle Scholar
  13. 13.
    Palumbo, D., Galietti, U.: Damage investigation in composite materials by means of new thermal data processing procedures. Strain 52, 276–285 (2016).  https://doi.org/10.1111/str.12179 CrossRefGoogle Scholar
  14. 14.
    Ibarra Castandeo, C.: Universitè Laval, Quantitative subsurface defect evaluation by pulsed phase thermography: depth retrieval with the phase, Collection Mémories et thèses électroniques 2005-10Google Scholar
  15. 15.
    Rodriguez, F.L., Nicolau, V.P., Maldague, X., Pulsed phase thermography applied on complex structures: modelling and numerical analysis. In: Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, 11–14 June 2012, Naples Italy. http://dx.doi.org/10.21611/qirt.2012.260
  16. 16.
    Maldague, X., Couturier, J.-P., Marinetti, S., Salerno, A., Wu, D.: Advances in pulsed phase thermography. In: Proceedings of the International Conference on Quantitative InfraRed Thermography 1996-Eurotherm Series 50 - Edizioni ETS, Pisa 1997. http://dx.doi.org/10.21611/qirt.1996.062
  17. 17.
    Ibarra-Castanedo, C., González, D. A., Maldague X.: Automatic Algorithm for Quantitative Pulsed Phase Thermography Calculations. In: CD of Proceedings 16th WCNDT – World Conference on Nondestructive Testing, Montreal (Quebec), August 30–September 3, 2004Google Scholar
  18. 18.
    Ibarra-Castanedo, C., González, D., Klein, M., Pilla, M., Vallerand, S., Maldague, X.: Infrared image processing and data analysis. Infrared Phys. Technol. 46(1–2), 75–83 (2004).  https://doi.org/10.1016/j.infrared.2004.03.011 CrossRefGoogle Scholar
  19. 19.
    Marinetti, S., Plotnikov, Y.A., Winfree, W.P., Braggiotti, A.: Pulse phase thermography for defect detection and visualization. In: Proceedings of the SPIE 3586, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware III 28 January (1999).  https://doi.org/10.1117/12.339890
  20. 20.
    Waugh, R.C., Dulieu-Barton, J.M., Quinn, S.: Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies. NDT E Int. 66, 52–66 (2014).  https://doi.org/10.1016/j.ndteint.2014.04.002 CrossRefGoogle Scholar
  21. 21.
    Sharath, D., Menaka, M., Venkatraman, B.: Defect characterization using pulsed thermography. J. Nondestr. Eval. 32(2), 134–141 (2013).  https://doi.org/10.1007/s10921-012-0166-4 CrossRefGoogle Scholar
  22. 22.
    Liu, B., Zhang, H., Fernandes, H., Maldague, X.: Quantitative evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (FOD) in CFRP. Sensors (Switzerland) (2016).  https://doi.org/10.3390/s16050743 CrossRefGoogle Scholar
  23. 23.
    Ibarra-Castanedo, C., Avdelidis, N.P., Grinzato, E.G., Bison, P.G., Marinetti, S., Chen, L., Genest, M., Maldague, X.: Quantitative inspection of non-planar composite specimens by pulsed phase thermography. Maldague Quant. InfraRed Thermogr. J. 3(1), 25–40 (2006).  https://doi.org/10.3166/qirt.3.25-40 CrossRefGoogle Scholar
  24. 24.
    Gruber, J., Stotter, B., Mayr, G., Hendorfer, G.: Prospects of pulse phase thermography for finding disbonds in CFRP-sandwich parts with aluminum honeycomb cores compared to ultrasonic. AIP Conf. Proc. 1511, 547 (2013).  https://doi.org/10.1063/1.4789095 CrossRefGoogle Scholar
  25. 25.
    Ciampa, F., Mahmoodi, P., Pinto, F., Meo, M.: Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 18(2), 609 (2018).  https://doi.org/10.3390/s18020609 CrossRefGoogle Scholar
  26. 26.
    Oswald-Tranta, B.: Time and frequency behaviour in TSR and PPT evaluation for flash thermography*. Quant. InfraRed Thermogr. J. 14(2), 164–184 (2017).  https://doi.org/10.1080/17686733.2017.1283743 CrossRefGoogle Scholar
  27. 27.
    Tamborrino, R., Palumbo, D., Galietti, U., Aversa, P., Chiozzi, S., Luprano, V.A.M.: Assessment of the effect of defects on mechanical properties of adhesive bonded joints by using non destructive methods. Compos. B Eng. (2016).  https://doi.org/10.1016/j.compositesb.2016.01.059 CrossRefGoogle Scholar
  28. 28.
    Palumbo, D., Tamborrino, R., Galietti, U., Aversa, P., Tatì, A., Luprano, V.A.M.: Ultrasonic analysis and lock-in thermography for debonding evaluation of composite adhesive joints. NDT E Int. 78, 1–9 (2016).  https://doi.org/10.1016/j.ndteint.2015.09.001 CrossRefGoogle Scholar
  29. 29.
    Maldague, X.P.V.: Theory and practice of infrared technology for non destructive testing. Wiley, New Jersey (2001). ISBN 978-0-471-18190-3Google Scholar
  30. 30.
    Vahid, P.H.: Automatic defect detection and depth estimation using pulsed thermography. Mémoire de maîtrise en génie électrique, Maître ès sciences (M.Sc.) Québec, Canada. www.theses.ulaval.ca/2014/31071/31071 (2014)
  31. 31.
    Zalameda, J.N., Winfree, W.P.: Thermal diffusivity measurements on composite porosity samples. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1541–1548. Springer, New York (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. D’Accardi
    • 1
  • F. Palano
    • 2
  • R. Tamborrino
    • 1
    Email author
  • D. Palumbo
    • 1
  • A. Tatì
    • 3
  • R. Terzi
    • 2
  • U. Galietti
    • 1
  1. 1.DMMM - Politecnico di BariBariItaly
  2. 2.ENEA C.R. BrindisiBrindisiItaly
  3. 3.ENEA C.R. CASACCIARomeItaly

Personalised recommendations