Characterization of Liquids Using Electrical Properties in Microwave and Millimeter Wave Frequency Bands

  • Turgut OzturkEmail author


This paper describes effects of electrical properties of materials to recognize the liquids with high accuracy. The goal of this study is to quickly characterize a liquid by making accurate predictions. By interpreting the relationships between the specified properties, the forecasts have been tried to be executed about other important parameters of any liquid. However, although the effects of the important parameters are paid attention, the temperature effect is not considered, in this study. Considering the high importance of safety and security applications, the liquids analyzed in this study were chosen to be transported by one person on various trips. Two different microwave spectroscopy systems (reflectivity free space and coaxial probe measurement methods), are used to collect the electrical properties of liquids by vector network analyzer. Furthermore, these specially selected liquids are first measured in a wide frequency range and the values of their complex permittivity are given.


Characterization of liquids Permittivity Conductivity Coaxial probe Non-destructive measurement 


  1. 1.
    Al-Mously, S.I.Y.: A modified complex permittivity measurement technique at microwave frequency. Int. J. New Comput. Archit. Appl. 2, 389–401 (2012)Google Scholar
  2. 2.
    Buyukozturk, O., Yu, T.Y., Ortega, J.A.: A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. Cem. Concr. Compos. 28, 349–359 (2006). CrossRefGoogle Scholar
  3. 3.
    Haddadi, K., Wang, M.M., Benzaim, O., Glay, D., Lasri, T.: Contactless microwave technique based on a spread-loss model for dielectric materials characterization. IEEE Microw. Wirel. Compon. Lett. 19, 33–35 (2009). CrossRefGoogle Scholar
  4. 4.
    Jilani, M.T., Zaka, M., Khan, A.M., Khan, M.T., Ali, S.M.: A brief review of measuring techniques for characterization of dielectric materials. Int. J. Inf. Technol. Electr. Eng. 1, 1–5 (2012)Google Scholar
  5. 5.
    Tereshchenko, O.V., Buesink, F.J.K., Leferink, F.B.J.: An overview of the techniques for measuring the dielectric properties of materials. In: XXXth URSI General Assembly and Scientific Symposium. pp. 1–4. IEEE (2011)Google Scholar
  6. 6.
    Tosaka, T., Fujii, K., Fukunaga, K., Kasamatsu, A.: Development of complex relative permittivity measurement system based on free-space in 220-330-GHz range. IEEE Trans. Terahertz Sci. Technol. 5, 1–8 (2014). CrossRefGoogle Scholar
  7. 7.
    Górny, M., Rzoska, S.J.: Experimental solutions for nonlinear dielectric studies in complex liquids. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 45–53. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  8. 8.
    Kraut, H., Eiblmaier, J., Grethe, G., Löw, P., Matuszczyk, H., Saller, H.: Algorithm for reaction classification. J. Chem. Inf. Model. 53, 2884–2895 (2013). CrossRefGoogle Scholar
  9. 9.
    Orzechowski, K., Kosmowska, M.: Dielectric properties of critical conducting mixtures. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 89–100. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  10. 10.
    Urban, S., Wűrflinger, A.: Influence of pressure on the dielectric properties of liquid crystals. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 211–220. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  11. 11.
    Liu, L.: Application of microwave for remote NDT and distinction of biofouling and wall thinning defects ınside a metal pipe. J. Nondestruct. Eval. 34, 40 (2015). CrossRefGoogle Scholar
  12. 12.
    Eremenko, Z.E., Skresanov, V.N., Shubnyi, A.I., Anikina, N.S., Gerzhikova, V.G., Zhilyakov, T.A.: Complex permittivity measurement of high loss liquids and its application to wine analysis. In: Zhurbenko, V. (ed.) Electromagnetic Waves, 1st edn., pp. 403–422. InTech, Rijeka (2011)Google Scholar
  13. 13.
    Jiang, Y., Ju, Y., Yang, L.: Nondestructive ın-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide. J. Nondestruct. Eval. 35, 7 (2016). CrossRefGoogle Scholar
  14. 14.
    Li, Z., Haigh, A., Soutis, C., Gibson, A., Sloan, R.: A simulation-assisted non-destructive approach for permittivity measurement using an open-ended microwave waveguide. J. Nondestruct. Eval. 37, 39 (2018). CrossRefGoogle Scholar
  15. 15.
    Pappas, R.A., Bamberger, J.A., Bond, L.J., Greenwood, M.S., Panetta, P.D., Pfund, D.M.: Ultrasonic methods for characterization of liquids and slurries. In: 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), pp. 563–566. IEEE (2001)Google Scholar
  16. 16.
    Cherpak, N.T., Barannik, A.A., Prokopenko, Y.V., Smirnova, T.A., Filipov, Y.F.: A new technique of dielectric characterization of liquids. In: Rzoska, S.J., Zhelezny, V. (eds.) Nonlinear Dielectric Phenomena in Complex Liquids, 1st edn., pp. 63–76. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  17. 17.
    Jiang, X., Yang, T., Li, C., Zhang, R., Zhang, L., Zhao, X., Zhu, H.: Rapid liquid recognition and quality ınspection with graphene test papers. Glob. Chall. 1, 1700037 (2017). CrossRefGoogle Scholar
  18. 18.
    Ozturk, T.: Classification of measured unsafe liquids using microwave spectroscopy system by multivariate data analysis techniques. J. Hazard. Mater. 363, 309–315 (2019). CrossRefGoogle Scholar
  19. 19.
    Kim, S., Kwak, J., Ko, B.: Automatic classification algorithm for raw materials using mean shift clustering and stepwise region merging in color. J. Broadcast. Eng. 21, 425–435 (2016). CrossRefGoogle Scholar
  20. 20.
    Ozturk, T., Elhawil, A., Uluer, İ., Guneser, M.T.: Development of extraction techniques for dielectric constant from free-space measured S-parameters between 50 and 170 GHz. J. Mater. Sci.: Mater. Electron. 28, 11543–11549 (2017). CrossRefGoogle Scholar
  21. 21.
    Ozturk, T., Hudlička, M., Uluer, İ.: Development of measurement and extraction technique of complex permittivity using transmission parameter S21 for millimeter wave frequencies. J. Infrared Millim. Terahertz Waves 38, 1510–1520 (2017). CrossRefGoogle Scholar
  22. 22.
    Petersson, L.E.R., Smith, G.S.: An estimate of the error caused by the plane-wave approximation in free-space dielectric measurement systems. IEEE Trans. Antennas Propag. 50, 878–887 (2002). CrossRefGoogle Scholar
  23. 23.
    Mitani, T., Hasegawa, N., Nakajima, R., Shinohara, N., Nozaki, Y., Chikata, T., Watanabe, T.: Development of a wideband microwave reactor with a coaxial cable structure. Chem. Eng. J. 299, 209–216 (2016). CrossRefGoogle Scholar
  24. 24.
    Santos, J.C.A., Dias, M.H.C., Aguiar, A.P., Borges Jr., I., Borges, L.E.P.: Using the coaxial probe method for permittivity measurements of liquids at high temperatures. J. Microw. Optoelectron. Electromagn. Appl. 8, 78–91 (2009)Google Scholar
  25. 25.
    Zajíček, R., Oppl, L., Vrba, J.: Broadband measurement of complex permitivity using reflection method and coaxial probes. Radioengineering 17, 14–19 (2008)Google Scholar
  26. 26.
    Lange, N.A., Dean, J.A.: Lange’s handbook of chemistry. J. Pharm. Sci. 68, 805–806 (1979). CrossRefGoogle Scholar
  27. 27.
    Grünewald, H.: CRC handbook of chemistry and physics. Angew. Chemie. 78, 912 (1966). CrossRefGoogle Scholar
  28. 28.
    Lucic, B., Basic, I., Nadramija, D., Milicevic, A., Trinajstic, N., Suzuki, T., Petrukhin, R., Karelson, M., Katritzky, A.R.: Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods. Arkivoc 2002, 45 (2002). CrossRefGoogle Scholar
  29. 29.
    Yao, M., Endo, H.: Structure and physical properties of liquid chalcogens. J. Non. Cryst. Solids. 205–207, 85–88 (1996). CrossRefGoogle Scholar
  30. 30.
    Pohanish, R.P.: Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. Elsevier, Amsterdam (2012)Google Scholar
  31. 31.
    Zhang, H.: Electrical properties of food. Food Eng. 1, 1–5 (2009)CrossRefGoogle Scholar
  32. 32.
    Kumar, D., Singh, A., Tarsikka, P.S.: Interrelationship between viscosity and electrical properties for edible oils. J. Food Sci. Technol. 50, 549–554 (2013). CrossRefGoogle Scholar
  33. 33.
    Zhang, G.-H., Yan, B.-J., Chou, K.-C., Li, F.-S.: Relation between viscosity and electrical conductivity of silicate melts. Metall. Mater. Trans. B 42B, 261–264 (2011). CrossRefGoogle Scholar
  34. 34.
    Zhang, G.-H., Chou, K.-C.: Correlation between viscosity and electrical conductivity of aluminosilicate melts. Metall. Mater. Trans. B 43B, 849–855 (2012). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical-Electronics EngineeringBursa Technical UniversityBursaTurkey

Personalised recommendations