Advertisement

Water Migration in One-Side Heated Concrete: 4D In-Situ CT Monitoring of the Moisture-Clog-Effect

  • Bartosz PowierzaEmail author
  • Ludwig Stelzner
  • Tyler Oesch
  • Christian Gollwitzer
  • Frank Weise
  • Giovanni Bruno
Article

Abstract

Explosive spalling due to fire exposure in concrete structures can lead severe damage and, in the worst case, to premature component failure. For this reason, an in situ investigation of water migration in concrete due to surface heating was undertaken. During these experiments, a miniaturized concrete specimen within a confining and insulating double-hull was subjected to surface heating during simultaneous X-ray computed tomography (CT) scanning. Through the use of subtraction-based image analysis techniques, it was possible to observe and quantify not only drying within areas of the concrete matrix close to the heated surface, but also the migration of moisture to both pore and matrix regions deeper within the specimen. It was also discovered that the correction of CT images for specimen deformation using DVC and variable detector performance using calibrated image filters significantly improved the quality of the results. This clearly demonstrates the potential of X-ray CT for evaluation of other rapid-density-change phenomena in concrete and other building materials.

Keywords

In-Situ X-ray CT DVC Heated concrete Water migration Fire 

Notes

Acknowledgements

The authors would like to acknowledge their gratitude to Dr. Illerhaus, Mr. Meinel and Mr. Onel for their support and advice regarding CT scanning techniques and analysis methods. The work was internally funded by the Bundesanstalt für Materialforschung und –prüfung (BAM) through the Menschen-Ideen-Strukturen (MIS) Program.

References

  1. 1.
    Kordina, K.: Planung unterirdischer Verkehrsanlagen gegen Brandgefahren. In: Tunnel (2004)Google Scholar
  2. 2.
    Kalifa, P., Chéné, G., Gallé, C.: High-temperature behaviour of HPC with polypropylene fibres From spalling to microstructure. Cem. Concr. Res. 31, 1487–1499 (2001)CrossRefGoogle Scholar
  3. 3.
    Jansson, R., Boström, L.: Fire spalling—the moisture effect. In: Dehn F., Koenders, E.A.B. (eds.) 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig. pp. 120–129 (2009)Google Scholar
  4. 4.
    Van der Heijden, G.H.A., et al.: One-dimensional scanning of moisture in heated porous building materials with NMR. J. Magn. Reson. 208, 235–242 (2011)CrossRefGoogle Scholar
  5. 5.
    Weber, B., et al.: Neutron radiography of heated high-performance mortar. MATEC Web Conf. 6, 8 (2013)CrossRefGoogle Scholar
  6. 6.
    Toropovs, N., et al.: Real-time measurement of temperature, pressure and moisture profiles in high-performance concrete exposed to high temperatures during neutron radiography imaging. Cem. Concr. Res. 68, 166–173 (2015)CrossRefGoogle Scholar
  7. 7.
    Powierza, B.: In-Situ CT observation of water migration in heated concrete. In: 3rd International Conference on Tomography of Materials and Structures, Lund, Sweden (2017)Google Scholar
  8. 8.
    Stelzner, L., et al.: Analysis of moisture transport in unilateral-heated dense high-strength concrete. In: 5th International Workshop on Concrete Spalling due to Fire Exposure, Borås, Sweden (2017)Google Scholar
  9. 9.
    Masschaele, B., et al.: High-speed thermal neutron tomography for the visualization of water repellents, consolidants and water uptake in sand and lime stones. Radiat. Phys. Chem. 71(3–4), 807–808 (2004)CrossRefGoogle Scholar
  10. 10.
    Hillenbach, A., et al.: High flux neutron imaging for high-speed radiography, dynamic tomography and strongly absorbing materials. Nucl. Instrum. Methods Phys. Res. Sect. A 542(1–3), 116–122 (2005)CrossRefGoogle Scholar
  11. 11.
    Martz, H.E., et al.: Computerized-tomography analysis of reinforced-concrete. ACI Mater. J. 90(3), 259–264 (1993)Google Scholar
  12. 12.
    Morgan, I.L., et al.: Examination of concrete by computerized-tomography. J. Am. Concr. Inst. 77(1), 23–27 (1980)Google Scholar
  13. 13.
    Flannery, B.P., et al.: Three-dimensional X-ray microtomography. Science 237(4821), 1439–1444 (1987)CrossRefGoogle Scholar
  14. 14.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  15. 15.
    Landis, E.N., Nagy, E.N., Keane, D.T.: Microtomographic measurements of internal damage in portland-cement-based composites. J. Aerosp. Eng. 10(1), 2–6 (1997)CrossRefGoogle Scholar
  16. 16.
    Asahina, D., Landis, E.N., Bolander, J.E.: Modeling of phase interfaces during pre-critical crack growth in concrete. Cem. Concr. Compos. 33(9), 966–977 (2011)CrossRefGoogle Scholar
  17. 17.
    Poinard, C., et al.: Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. Eur. J. Environ. Civ. Eng. 16, S115–S136 (2012)CrossRefGoogle Scholar
  18. 18.
    Oesch, T.S., Landis, E.N., Kuchma, D.A.: Conventional concrete and UHPC performance-damage relationships identified using computed tomography. J. Eng. Mech. 142(12), 531–538 (2016)CrossRefGoogle Scholar
  19. 19.
    Oesch, T.S.: In-Situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes. In: 6th Conference on Industrial Computed Tomography (ICT), Wels, Austria: NDT.net (2016)Google Scholar
  20. 20.
    Paetsch, O., et al.: 3D corrosion detection in time-dependent CT images of concrete. In: Digital Industrial Radiology and Computed Tomography Conference, Ghent, Belgium (2015)Google Scholar
  21. 21.
    Yang, L., et al.: In-Situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing. Mater. Lett. 160, 381–383 (2015)CrossRefGoogle Scholar
  22. 22.
    Boone, M.A., et al.: 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging. Mater. Charact. 97, 150–160 (2014)CrossRefGoogle Scholar
  23. 23.
    Yang, F., et al.: Visualization of water drying in porous materials by X-ray phase contrast imaging. J. Microsc. 261(1), 88–104 (2016)CrossRefGoogle Scholar
  24. 24.
    Wildenschild, D., et al.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3), 285–297 (2002)CrossRefGoogle Scholar
  25. 25.
    Wildenschild, D., et al.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)CrossRefGoogle Scholar
  26. 26.
    Dauti, D., et al.: Analysis of moisture migration in concrete at high temperature through in situ neutron tomography. Cem. Concr. Res. 111, 41–55 (2018)CrossRefGoogle Scholar
  27. 27.
    Schneider, U.: Compressive strength for service and accident conditions. Mater. Struct. 28(181), 410–414 (1995)Google Scholar
  28. 28.
    Kalifa, P., Menneteau, F.-D., Quenard, D.: Spalling and pore pressure in HPC at high temperatures. Papers presented at the symposium on transport properties and microstructure of cement-based systems, vol. 30, pp. 1915–1927 (2000)CrossRefGoogle Scholar
  29. 29.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)CrossRefGoogle Scholar
  30. 30.
    Rüegsegger, P., et al.: Standardization of computed tomography images by means of a material-selective beam hardening correction. J. Comput. Assist. Tomogr. 2(2), 184–188 (1978)CrossRefGoogle Scholar
  31. 31.
    Weise, F., Onel, Y., Goebbels, J.: Analyse des Gefuge- und Feuchtezustandes in mineralischen Baustoffen mit der Rontgen-3D-Computertomografie. Bauphysik 29(3), 194–201 (2007)CrossRefGoogle Scholar
  32. 32.
    Bay, B.K., et al.: Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39(3), 217–226 (1999)CrossRefGoogle Scholar
  33. 33.
    Roberts, B.C., Perilli, E., Reynolds, K.J.: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J. Biomech. 47(5), 923–934 (2014)CrossRefGoogle Scholar
  34. 34.
    Alba, A., et al.: Phase correlation with sub-pixel accuracy: a comparative study in 1D and 2D. Comput. Vis. Image Underst. 137(Suppl C), 76–87 (2015)CrossRefGoogle Scholar
  35. 35.
    Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. Trans. Image Proc. 11(3), 188–200 (2002)CrossRefGoogle Scholar
  36. 36.
    DIN, V., 1-2 Eurocode 2: Planung von Stahlbeton-und Spann-betontragwerken-Teil 1-2: Allgemeine Regeln-Tragwerksbemessung für den Brandfall, Ausgabe Dezember (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und –prüfungBerlinGermany

Personalised recommendations