Synthesis of Silver Nano-cubes and Study of Their Elastic Properties Using X-Ray Diffraction Line Broadening

  • Sumit Sarkar
  • Ratan DasEmail author


Poly(vinyl pyrrolidone) (PVP) protected silver nano-cubes (AgNCs) have been prepared through the chemical reduction using ethylene glycol as a reducing agent. High resolution transmission electron microscopic study (HRTEM) gives the average size of the prepared silver nanoparticles as 100 nm approximately with a morphology of cubic shape. The average crystalline size and lattice strain has been calculated from the peak broadening of the X-ray diffraction pattern (XRD) of silver nano-cubes. All the elastic properties such as strain, stress and energy density of prepared nanoparticles have been calculated using different modified models of the Williamson Hall Method. Here size and strain have also been calculated from the size–strain plot (SSP) method. UV/Vis study shows an absorption peak due to surface plasmon resonance (SPR) in the visible range at 2.79 eV and photoluminescence, which gives an emission spectra in the visible range at 2.53 eV, confirming a band gap in the silver nano-cubes.


Silver nano-cubes Elastic properties Optical properties X-ray diffraction W–H method SSP method 



Authors are thankful to the SAIF, NEHU, Shillong, India for conducting the TEM analysis and to Mr. Ratan Boruah, the Technical Asistant, Department of Physics, Tezpur University, Assam, India, for the assistance during the XRD study. The authors are also grateful to FIST- DST Program Govt. of India (Ref. NO. SR/FST/PSI-191/2014, Dated 21.11.2014) for financial grant to the department.


  1. 1.
    Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Zhao, Y.A., Lu, K.: Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by X-ray diffraction. Phys. Rev. B 56, 14330 (1997)CrossRefGoogle Scholar
  3. 3.
    Rietveld, H.M.: Line profiles of neutron powder diffraction peaks for structure refinement. Acta. Crystallogr. 22, 151–152 (1967)CrossRefGoogle Scholar
  4. 4.
    Balzar, D., Ledbetter, H.J.: Voigt function modeling in Fourier analysis of size and strain broadened X-ray diffraction peaks. Appl. Crystallogr. 26, 97–103 (1993)CrossRefGoogle Scholar
  5. 5.
    Warren, B.E., Averbach, B.L.: The effect of cold-work distorsion on X-ray pattems. J. Appl. Phys. 21, 595 (1950)CrossRefGoogle Scholar
  6. 6.
    Zak, A.K., Majid, W.H.A., Abrishami, M.E., Yousefi, R., Parvizi, R.: Synthesis, magnetic properties and X-ray analysis of Zn0.97X0.03O nanoparticles (X = Mn, Ni, and Co) using Scherrer and size–strain plot methods. Solid State Sci. 14, 488–494 (2012)CrossRefGoogle Scholar
  7. 7.
    Chaure, N.B., Pal, C., Barard, S., Kreouzis, T., Ray, A.K., Cammidge, A.N., Chambrier, I., Cook, M.J., Murphy, C.E., Cain, M.G.: A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors. J. Mater. Chem. 22, 19179–19189 (2012)CrossRefGoogle Scholar
  8. 8.
    Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., Kumari, B.S.: X-ray analysis by Williamson–Hall and size–strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)CrossRefGoogle Scholar
  9. 9.
    Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)CrossRefGoogle Scholar
  10. 10.
    Kauffmann, Y.: Characterization of micro-strains in nano-crystalline materials. Master Israel Institute of Technology (2003)Google Scholar
  11. 11.
    De Keijser, T.H., Langford, J.I., Mittemeijer, E.J., Vogels, A.B.P.: Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308–314 (1982)CrossRefGoogle Scholar
  12. 12.
    Kodiyath, R., Malak, S.T., Combs, Z.A., et al.: Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. Mater. Chem. A 1, 2677–2928 (2013)CrossRefGoogle Scholar
  13. 13.
    Lee, C.F., Chang, C.L., Yang, J.C., et al.: Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction. J. Colloid Interface Sci. 369, 129–133 (2012)CrossRefGoogle Scholar
  14. 14.
    Kan, C.X., Zhu, J.J., Zhu, X.G.: Silver nanostructures with well controlled shapes: synthesis, characterization and growth mechanisms. J. Phys. D: Appl. Phys. 41, 155304 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Gong, J., Xiong, Y., Yang, J., Gao, Y., Liu, Y., Lu, X., Tang, Z.: Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun. 47, 6894–6896 (2011)CrossRefGoogle Scholar
  16. 16.
    Ramasamy, V., Praba, K., Murugadoss, G.: Study of optical and thermal properties in nickel doped ZnS nanoparticles using surfactants. Superlattices Microstruct. 51, 699–714 (2012)CrossRefGoogle Scholar
  17. 17.
    Bernabò, M., Pucci, A., Ramanitra, H.H., Ruggeri, G.: Polymer nanocomposites containing anisotropic metal nanostructures as internal strain indicators. Materials 3, 1461–1477 (2010)CrossRefGoogle Scholar
  18. 18.
    Sun, Y., Yin, Y., Mayers, B.T., Herricks, T., Xia, Y.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)CrossRefGoogle Scholar
  19. 19.
    Soltani, N., Dehzangi, A., Kharazmi, A., Saion, E., Yunus, W.M.M., Majlis, B.Y., Zare, M.R., Gharibshahi, E., Khalilzadeh, N.: Study of optical properties of cds/pbs and pbs/cds heterojunction thin films deposited using solution growth technique. Chalcogenide Lett. 11, 79–90 (2014)Google Scholar
  20. 20.
    Birkholz, M.: Thin Film Analysis by X-ray Scattering. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2006)Google Scholar
  21. 21.
    Begum, A., Hussain, A., Rahman, A.: Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films, Beilstein. J. Nanotechnol. 3, 438–443 (2012)Google Scholar
  22. 22.
    Sarkar, S., Das, R.: Shape effect on the elastic properties of Ag nanocrystals. IET Micro Nano Lett. 13, 312–315 (2018)CrossRefGoogle Scholar
  23. 23.
    Lalena, J.N., Cleary, D.A.: Principles of Inorganic Materials Design. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  24. 24.
    Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford (1985)zbMATHGoogle Scholar
  25. 25.
    Yan, Z., Vincent, J.I.: General compliance transformation relations for all seven crystal systems. Sci. China Phys. Mech. Astron. 56, 694 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Zhang, Y., Xu, K.W., Ji, V.: General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139, 87 (2006)CrossRefGoogle Scholar
  27. 27.
    Courtney T., Mechanical Behavior of Materials, McGraw-Hill, 0-07-013265-8, 620.11292C86MGoogle Scholar
  28. 28.
    Sarma, H., Sarma, K.C.: X-ray peak broadening analysis of ZnO nanoparticles derived by precipitation method. Int. J. Sci. Res. Publ. 4, 2250–3153 (2014)Google Scholar
  29. 29.
    Prince, E., Stalick, J.K.: Accuracy in powder diffraction II. NIST Spec. Publ. 597, 567 (1992)Google Scholar
  30. 30.
    Tagliente, M.A., Massaro, M.: Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nucl. Instrum. Methods Phys. Res. B 266, 1055–1061 (2008)CrossRefGoogle Scholar
  31. 31.
    Thool, G.S., Singh, A.K., Singh, R.S., Gupta, A., Susan, MdABH: Facile synthesis of flat crystal ZnO thin films by solution growth method: a micro-structural investigation. J. Saudi Chem. Soc. 18, 712–721 (2014)CrossRefGoogle Scholar
  32. 32.
    Wilson, A.C.J.: X-ray Optics. Methuen and Co. ltd, London (1949)zbMATHGoogle Scholar
  33. 33.
    Balzar, D., Ledbetter, H.: Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97–103 (1993)CrossRefGoogle Scholar
  34. 34.
    Vives, S., Gaffet, E., Meunier, C.: X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A 366, 229–238 (2004)CrossRefGoogle Scholar
  35. 35.
    Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L., Fu, Z.: Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J. Appl. Phys. 65, 305 (1989)CrossRefGoogle Scholar
  36. 36.
    Nazrov, A.A., Romanov, A.E., Valiev, R.R.: On the nature of high internal stresses in ultrafine grained materials. Nanostruct. Mater. 4, 93 (1994)CrossRefGoogle Scholar
  37. 37.
    Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. of Theor. Appl. Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
  38. 38.
    Dapiaggi, M., Geiger, C.A., Artioli, G.: Microscopic strain in synthetic pyrope-grossular solid solutions determined by synchrotron X-ray powder diffraction at 5 K: the relationship to enthalpy of mixing behavior. Am. Miner. 90, 506–509 (2005)CrossRefGoogle Scholar
  39. 39.
    Eckert, J., Holzer, J.C., Krill, C.E.: Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 (1992)CrossRefGoogle Scholar
  40. 40.
    Saravanan, M.S., Sivaprasad, K., Susila, P., Babu, S.K.: Anisotropy models in precise crystallite size determination of mechanically alloyed powders. Phys. B 406, 165–168 (2011)CrossRefGoogle Scholar
  41. 41.
    Mogensen, K.B., Kneipp, K.: Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: monitoring the onset of surface screening effects. J. Phys. Chem. C 118, 28075–28083 (2014)CrossRefGoogle Scholar
  42. 42.
    Mahmudin, L., Suharyadi, E., Utomo, A.B.S., Abraha, B.: Optical properties of silver nanoparticles for surface plasmon resonance (SPR)-based biosensor applications. J. Mod. Phys. 6, 1071–1076 (2015)CrossRefGoogle Scholar
  43. 43.
    Sarkar, S., Das, R.: Presence of chlorpyrifos shows blue shift of the absorption peak ofsilver nanohexagons solution: an indication of etching ofnanocrystals and sensing of chlorpyrifos. Sens. Actuat. B 266, 149–159 (2018)CrossRefGoogle Scholar
  44. 44.
    Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)CrossRefGoogle Scholar
  45. 45.
    Mohamed, M.B., Volkov, V., Link, S., El-Sayed, M.A.: The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517 (2000)CrossRefGoogle Scholar
  46. 46.
    Feng, A.L., You, M.L., Tian, L., Singamaneni, S., Liu, M., Duan, Z., Lu, T.J., Xu, F., Lin, M.: Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Sci. Rep. 5, 7779 (2015). CrossRefGoogle Scholar
  47. 47.
    Lumdee, C., Yun, B., Kik, P.G.: Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photonics 1, 1224–1230 (2014)CrossRefGoogle Scholar
  48. 48.
    Varnavski, O.P., Mohamed, M.B., El-Sayed, M.A., Goodson, T.: Relative enhancement of ultrafast emission in gold nanorods. J. Phys. Chem. B 107, 3101 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nano-Physics and Nanotechnology Research Lab, Department of PhysicsTripura UniversitySuryamaninagarIndia

Personalised recommendations