Advertisement

Detection of Delaminations in Sunlight-Unexposed Concrete Elements of Bridges Using Infrared Thermography

  • Joaquin Humberto Aquino RochaEmail author
  • Yêda Vieira Póvoas
  • Cynthia Firmino Santos
Article

Abstract

Infrared thermography is a non-destructive test used in the inspection of structures. However, its use for bridge inspection is still under development and in many cases its application may be limited to bridge sections exposed to direct sunlight. This study aims to evaluate infrared thermography test for the detection of delaminations in different types of concrete not exposed directly to sunlight. The experimental methodology uses two concrete specimens with water/cement ratios (w/c) equal to 0.5 and 0.6, through the insertion of polystyrene plates of different thicknesses (3, 6 and 12 mm) and depths (25, 50 and 75 mm), in order to simulate defects within the concrete and evaluate the capacity of infrared thermography to detect them. The results show that detection is possible, but limited to short periods of time. In relation to the concrete quality, defects were more easily detected in the test specimen with lower w/c ratio. It can be said that the nearer to the surface and larger the delamination, the easier it is to detect. Also, the better the quality of the concrete, the more effective the technique becomes.

Keywords

Infrared thermography Passive thermal imaging Concrete Bridge inspection 

Notes

Acknowledgements

To CAPES (Coordination of Improvement of Higher Level Personnel) for the financial support.

References

  1. 1.
    Farrag, S., Yehia, S., Qaddoumi, N.: Investigation of mix-variation effect on defect-detection ability using infrared thermography as a nondestructive evaluation technique. J Bridge Eng. 21, 1–15 (2016).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000779 CrossRefGoogle Scholar
  2. 2.
    Vemuri, S., Atadero, A.: Case study on rapid scanning techniques for concrete bridge decks with asphalt overlay: ground-penetrating radar and infrared thermography. Pract. Period. Struct. Des. Const. 22, 1–8 (2017).  https://doi.org/10.1061/(ASCE)SC.1943-5576.0000313 CrossRefGoogle Scholar
  3. 3.
    Nawy, E.G.: Concrete Construction Engineering Handbook, 2nd edn. CRC Press, Upper Saddle River (2008). ISBN 978-0-849-37492-0CrossRefGoogle Scholar
  4. 4.
    Oh, T., Kee, S., Arndt, R., Popovics, J., Zhu, J.: Comparison of NDT methods for assessment of a concrete bridge deck. J. Eng. Mech-ASCE 193, 305–314 (2013).  https://doi.org/10.1061/(ASCE)EM.1943-7889.0000441 CrossRefGoogle Scholar
  5. 5.
    Washer, G., Fenwick, R., Bolleni, N.: Effects of solar loading on infrared imaging of subsurface features in concrete. J. Bridge Eng. 15, 384–390 (2010).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000117 CrossRefGoogle Scholar
  6. 6.
    Washer, G.: Advances in the use of thermographic imaging for the condition assessment of bridges. Bridge Struct. 8, 81–90 (2012).  https://doi.org/10.3233/BRS-2012-0041 CrossRefGoogle Scholar
  7. 7.
    Hiasa S (2016) Investigation of infrared thermography for subsurface damage detection of concrete structures. Dissertation, University of Central FloridaGoogle Scholar
  8. 8.
    Hiasa, S., Catbas, F.N., Matsumoto, M., Mitani, K.: Monitoring concrete bridge decks using infrared thermography with high speed vehicle. Struct. Monit. Maint. 3, 277–296 (2016)Google Scholar
  9. 9.
    Kee, S., Oh, T., Popovics, J., Arndt, R., Zhu, J.: Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography. J. Bridge Eng. 17, 928–939 (2012).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000350 CrossRefGoogle Scholar
  10. 10.
    Vemuri S (2016) Evaluation of rapid scanning techniques for inspecting concrete bridge decks with asphalt overlay. Dissertation, Colorado State UniversityGoogle Scholar
  11. 11.
    Rehman, S.K., Ibrahim, Z., Memon, S.A., Jameel, M.: Nondestructive test methods for concrete bridges: a review. Constr. Build. Mater. 107, 58–86 (2016).  https://doi.org/10.1016/j.conbuildmat.2015.12.011 CrossRefGoogle Scholar
  12. 12.
    Watase, A., Birgul, R., Hiasa, S., Matsumoto, M., Mitani, K., Catbas, F.N.: Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation. Constr. Build. Mater. 101, 1016–1030 (2015).  https://doi.org/10.1016/j.conbuildmat.2015.10.156 CrossRefGoogle Scholar
  13. 13.
    Alfredo-Cruz, R.A., Quintero-Ortiz, L.A., Galán-Pinilla, C.A., Espinosa-García, E.J.: Evaluación de técnicas no destructivas en elementos de concreto para puentes. Rev. Fac. Ing. 24, 83–96 (2015)Google Scholar
  14. 14.
    Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C., Moore, M., Graybeal, B., Washer, G.: A comparison of nondestructive evaluation methods for bridge deck assessment. NDT&E Int. 36, 245–255 (2003).  https://doi.org/10.1016/S0963-8695(02)00061-0 CrossRefGoogle Scholar
  15. 15.
    Abudayyeh, O., Abdel-Qader, I., Nabulsi, S., Weber, J.: Using non-destructive technologies and methods in bridge management systems. J. Urban Tech. 11, 63–76 (2004).  https://doi.org/10.1080/1063073042000341989 CrossRefGoogle Scholar
  16. 16.
    Yehia, S., Abudayyeh, O., Nabulsi, S., Abdelqader, I.: Detection of Common Defects in Concrete Bridge Decks Using Nondestructive Evaluation Techniques. J. Bridge Eng. 12, 215–225 (2007)CrossRefGoogle Scholar
  17. 17.
    Forde, M.C.: International practice using NDE for the inspection of concrete and masonry arch bridges. Bridge Struct. 6, 25–34 (2010).  https://doi.org/10.3233/BRS-2010-004 CrossRefGoogle Scholar
  18. 18.
    Clark, M., Mccann, D., Forde, M.C.: Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT&E Int. 36, 265–275 (2003).  https://doi.org/10.1016/S0963-8695(02)00060-9 CrossRefGoogle Scholar
  19. 19.
    Vaghefi, K., Oats, R., Harris, D., Ahlborn, T., Brooks, C., Endsley, K., Roussi, C., Shuchman, R., Burns, J., Dobson, R.: Evaluation of commercially available remote sensors for highway bridge condition assessment. J. Bridge Eng. 17, 886–895 (2012).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000303 CrossRefGoogle Scholar
  20. 20.
    Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J.: Infrared thermography for condition monitoring: a review. Infrared Phys. Technol. 60, 35–55 (2013).  https://doi.org/10.1016/j.infrared.2013.03.006 CrossRefGoogle Scholar
  21. 21.
    Dabous, S., Yaghi, S., Alkass, S., Moselhi, O.: Concrete bridge deck condition assessment using IR Thermography and Ground Penetrating Radar technologies. Automat. Constr. 74, 340–354 (2017).  https://doi.org/10.1016/j.autcon.2017.04.006 CrossRefGoogle Scholar
  22. 22.
    Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I.: Bridge Deck delamination identification from unmanned aerial vehicle infrared imagery. Automat. Constr. 72, 155–165 (2016).  https://doi.org/10.1016/j.autcon.2016.08.024 CrossRefGoogle Scholar
  23. 23.
    Hiasa, S., Birgul, R., Catbas, N.: A data processing methodology for infrared thermography images of concrete bridges. Comput. Struct. 190, 205–218 (2017).  https://doi.org/10.1016/j.compstruc.2017.05.011 CrossRefGoogle Scholar
  24. 24.
    Rocha, J.H.A., Póvoas, Y.V.: Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: a review of the state of the art. Rev. ALCONPAT 7, 200–2014 (2017)CrossRefGoogle Scholar
  25. 25.
    Manning, D.G., Holt, F.B.: Detecting delaminations in concrete Bridge Decks. Concr. Int. 2, 34–42 (1980)Google Scholar
  26. 26.
    Washer, G., Fenwick, R., Bolleni, N.: Development of Hand-held Thermographic Inspection Technologies, 1st edn. MODOT, Jefferson City (2009)Google Scholar
  27. 27.
    Baek, S., Xue, W., Feng, M.Q.: Nondestructive corrosion detection in RC through integrated heat induction and IR thermography. J. Nondestruct Eval. 31, 181–190 (2012).  https://doi.org/10.1007/s10921-012-0133-0 CrossRefGoogle Scholar
  28. 28.
    Tran, Q.H., Han, D., Kang, C., Haldar, A., Huh, J.: Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging. Sensors 17, 1–18 (2017).  https://doi.org/10.3390/s17081718 CrossRefGoogle Scholar
  29. 29.
    Vaghefi, K., Ahlborn, T., Harris, D.K., Brooks, C.: Combined imaging technologies for concrete bridge deck condition assessment. J. Perform. Constr. Fac. 29, 1–8 (2015).  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465 CrossRefGoogle Scholar
  30. 30.
    ASTM: D4788–03: standard test method for detecting delaminations in bridge decks using infrared thermography. ASTM International, West Conshohocken (2013)Google Scholar
  31. 31.
    Hiasa, S., Catbas, N., Matsumoto, M., Mitani, K.: Considerations and issues in the utilization of infrared thermography for concrete bridge inspection at normal driving speeds. J. Bridge Eng. 22, 1–11 (2017).  https://doi.org/10.1061/(ASCE)BE.1943-5592.0001124 CrossRefGoogle Scholar
  32. 32.
    Hiasa, S., Birgul, R., Matsumoto, M., Catbas, N.: Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks. Measurement 121, 144–159 (2018).  https://doi.org/10.1016/j.measurement.2018.02.019 CrossRefGoogle Scholar
  33. 33.
    Cotič, P., Kolarič, D., Bokan Bosiljkov, V., Bosiljkov, V., Jagličić, Z.: Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography. NDT&E Int. 74, 87–93 (2015).  https://doi.org/10.1016/j.ndteint.2015.05.003 CrossRefGoogle Scholar
  34. 34.
    Vavilov, V.: Pulsed thermal NDT of materials: back to the basics. Nondestruct. Test. Eval. 22, 177–197 (2007).  https://doi.org/10.1080/10589750701448407 CrossRefGoogle Scholar
  35. 35.
    ASTM: C595 / C595 M-17, Standard Specification for Blended Hydraulic Cements. ASTM International, West Conshohocken (2017)Google Scholar
  36. 36.
    ABNT: NBR 7211: Agregado Para Concreto. ABNT, Rio de Janeiro (2009)Google Scholar
  37. 37.
    FLIR: User’s Manual FLIR Exx Series, 1st edn. FLIR, Wilsonville (2014)Google Scholar
  38. 38.
    ABNT: NBR 12655: Concreto de Cimento Portland – Preparo, controle e recebimento. ABNT, Rio de Janeiro (2015)Google Scholar
  39. 39.
    ABNT: NBR 5739: Concreto-Ensaio de compressão de corpos-de-prova cilíndricos. ABNT, Rio de Janeiro (2007)Google Scholar
  40. 40.
    Marshall, A.L.: The thermal properties of concrete. Building Science 7, 167–174 (1972).  https://doi.org/10.1016/0007-3628(72)90022-9 CrossRefGoogle Scholar
  41. 41.
    Xi, Y., Bažant, Z.P., Jennings, H.M.: Moisture diffusion in cementitious materials Adsorption isotherms. Adv. Cem. Mater. 1, 248–257 (1994).  https://doi.org/10.1016/1065-7355(94)90033-7 CrossRefGoogle Scholar
  42. 42.
    Taoukil, D., El bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., Ajzoul, T.: Moisture content influence on the thermal conductivity and diffusivity of wood-concrete composite. Constr. Build. Mater. 48, 104–115 (2013).  https://doi.org/10.1016/j.conbuildmat.2013.06.067 CrossRefGoogle Scholar
  43. 43.
    Gomes, M.G., Flores-Colen, I., Manga, L.M., Soares, A., Brito, J.: The influence of moisture content on the thermal conductivity of external mortars. Constr. Build. Mater. 135, 279–286 (2017).  https://doi.org/10.1016/j.conbuildmat.2016.12.166 CrossRefGoogle Scholar
  44. 44.
    Abdelhamid, M., Mihoubi, D., Sghaier, J., Bellagi, A.: Water sorption isotherms and thermodynamic characteristics of hardened cement paste and mortar. Transport Porous Med. 113, 283–301 (2016).  https://doi.org/10.1007/s11242-016-0694-y CrossRefGoogle Scholar
  45. 45.
    Burgh, J., Foster, S.: Influence of temperature on water vapour sorption isotherms and kinetics of hardened cement paste and concrete. Cem. Concr. Res. 92, 37–55 (2017).  https://doi.org/10.1016/j.cemconres.2016.11.006 CrossRefGoogle Scholar
  46. 46.
    Al-hadharmi, L.M., Maslehuddin, M., Shameem, M., Ali, M.: Assessing concrete density using infrared thermographic (IRT) images. Infrared Phys. Technol. 55, 442–448 (2012).  https://doi.org/10.1016/j.infrared.2012.04.004 CrossRefGoogle Scholar
  47. 47.
    Mehta, K.P., Monteiro, P.: Concrete: Microstructure, Properties, and Materials, 4th edn. McGraw-Hill, New York (2012). ISBN 978-0-071-79787-0Google Scholar
  48. 48.
    Maierhofer, C., Arndt, R., Rollig, M.: Influence of concrete properties on the detection of voids with impulse-thermography. Infrared Phys. Technol. 49, 213–217 (2007).  https://doi.org/10.1016/j.infrared.2006.06.007 CrossRefGoogle Scholar
  49. 49.
    Aggelis, D., Kordatos, E., Soulioti, D., Matikas, T.: Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete. Constr. Build. Mater. 24, 1888–1897 (2010).  https://doi.org/10.1016/j.conbuildmat.2010.04.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joaquin Humberto Aquino Rocha
    • 1
    Email author
  • Yêda Vieira Póvoas
    • 1
  • Cynthia Firmino Santos
    • 1
  1. 1.Universidade de PernambucoRecifeBrazil

Personalised recommendations