Advertisement

Dynamic Thermal Tomography of Composites: A Comparison of Reference and Reference-Free Approaches

  • Vladimir P. VavilovEmail author
  • Marina V. Kuimova
Article
  • 56 Downloads

Abstract

Dynamic thermal tomography is a technique that allows the display of “slices” of solids by analyzing the evolution of surface temperature as a function of time. This paper presents the principles of one-sided thermal tomography using reference points and also introduces a technique of thermal tomography that does not require the use of reference point. The diffusion nature of heat conduction in solids causes lateral diffusion, which modifies and complicates the heat flow that is needed to detect defects. In the case of anisotropic composite materials the heat will diffuse more readily in one direction than another. Lateral diffusion can make it difficult to detect (visualize) deep defects, especially those located under shallower ones. Artifacts can be reduced by thresholding timegrams but this may hide small defects. The effectiveness of thermal tomography in detecting impact damage (cracks/delaminations) in composites has been confirmed by numerous experiments.

Keywords

Thermal testing Thermal tomography Composite Impact damage 

Notes

Acknowledgements

This study was supported by the Russian Scientific Foundation Grant #17-19-01047 (numerical modeling) and in part by Tomsk Polytechnic University Competitiveness Enhancement Program Grant (experimentation).

References

  1. 1.
    Pikalov, V.V., Melnikova, T.S.: Plasma Tomography. Nauka Publish., Novosibirsk (1995). (in Russian) Google Scholar
  2. 2.
    Akhmetov, V.D., Fateev, N.V.: Infrared tomography of the lifetime and diffusion length of charge carriers in semi-conductive silicon ingots. Phys. Tech. Semicond. 35(1), 40–47 (2001). (in Russian) Google Scholar
  3. 3.
    Martin, M., Dabat-Blondeaux, C., Unger, M., Sedlmair, J., Parkinson, D.Y., Bechtel, H.A., Illman, B., Castro, J.M., Keiluweit, M., Buschke, D., Ogle, B., Nasse, M.J., Hirschmugl, C.J.: 3D spectral imaging with synchrotron Fourier transform infrared spectro–microtomography. Nat. Methods 10, 861–864 (2013)CrossRefGoogle Scholar
  4. 4.
    Barrett, A., Myers, P.S., Sadowsky, N.L.: Detection of breast cancer by microwave radiometer. Radio Sci. 12(68), 167–171 (1977)CrossRefGoogle Scholar
  5. 5.
    Troyitski, V.S.: To the theory of contact radiothermometric measurement of inner body temperature. Izv. Vuzov Radiophys. Ser. 24(9), 1054–1058 (1981). (in Russian) Google Scholar
  6. 6.
    Pasechnik, V.E., Anosov, A.A., Barabanenkov, Yu.N.: Determining in-depth temperature in biological objects by passive acoustic thermotomography. In: Proceedings of Acoustics, Science Session, pp. 375–378. Nizhny Novgorod State University, Nizhny Novgorod (2002, in Russian)Google Scholar
  7. 7.
    Xu, Y., Wei, X., Wang, G.: Temperature-change-based thermal tomography. Int. J. Biomed. Imaging (2009).  https://doi.org/10.1155/2009/464235 CrossRefGoogle Scholar
  8. 8.
    Rieke, V., Pauly, K.B.: MR thermometry. J. Magn. Reson. Imaging 27(2), 376–390 (2008)CrossRefGoogle Scholar
  9. 9.
    Rosencwaig, A., Gersho, A.: Thermal-wave imaging. Science 218, 223–228 (1982)CrossRefGoogle Scholar
  10. 10.
    Almond, D.P., Patel, P.: Photothermal Science and Techniques. Chapman and Hall, London (1996)Google Scholar
  11. 11.
    Mulaveesala, R., Tuli, S.: Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection. Appl. Phys. Lett. 19(19), 191913 (2006)CrossRefGoogle Scholar
  12. 12.
    Mandelis, A., Mieszkowski, M.: A thermal wave sub-surface defect imaging and tomography apparatus. U.S. Patent 4,950,897, 1990Google Scholar
  13. 13.
    Mandelis, A.: Theory of photothermal wave diffraction tomography via spatial Laplace spectral decomposition. J. Opt. Soc. Am. A6, 298 (1991)zbMATHGoogle Scholar
  14. 14.
    Mandelis, A.: Theory of photothermal wave diffraction tomography via spatial Laplace spectral decomposition. J. Phys. A 24, 2485 (1991)CrossRefGoogle Scholar
  15. 15.
    Munidasa, M., Mandelis, A., Ferguson, C.: Resolution of photothermal tomographic imaging of sub-surface defects in metals with ray-optic reconstruction. Appl. Phys. 54, 244 (1992)CrossRefGoogle Scholar
  16. 16.
    Pade, O., Mandelis, A.: Computational thermal-wave tomography of aluminum with ray-optic reconstruction. Rev. Sci. Instrum. 64, 3548 (1993)CrossRefGoogle Scholar
  17. 17.
    Kaiplavi, S., Mandelis, A., Wang, X., Feng, T.: Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones. Biomed. Opt. Express 5(8), 2488–2502 (2014)CrossRefGoogle Scholar
  18. 18.
    Kline, R.A., Winfree, W.P., Bakirov, V.F.: A new approach to thermal tomography. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Quantitative Nondestructive Evaluation, vol. 22, pp. 682–687 (2003)Google Scholar
  19. 19.
    Busse, G., Renk, F.: Stereoscopic depth analysis by thermal wave transmission for NDE. Appl. Phys. Lett. 42(4), 366–368 (1983)CrossRefGoogle Scholar
  20. 20.
    Nowakowski, A., Kaczmarek, M.: Active dynamic thermography—problems of implementation in medical diagnostics. QIRT J. 8(1), 89–106 (2011)CrossRefGoogle Scholar
  21. 21.
    Milovanović, B., Pečur, I.B.: Review of active IR thermography for detection and characterization of defects in reinforced concrete. J. Imaging 2(2), 11 (2011)CrossRefGoogle Scholar
  22. 22.
    Vavilov, V.P., Shiryaev, V.V.: Thermal tomograph. U.S.S.R. Patent 1,266,308, 1984Google Scholar
  23. 23.
    Vavilov, V.P., Jin, H., Thomas, R., Favro, L.: Experimental thermal tomography of solids by using one-sided pulse heating. Defectoscopiya 12, 122–130 (1990). (in Russian) Google Scholar
  24. 24.
    Vavilov, V., Bison, P.G., Bressan, C., Grinzato, E.: Some new ideas in dynamic thermal tomography. In: Proceedings of Eurotherm Seminar #27 “Quant. Infrared Thermography-QIRT’92”, Chatenay-Malabry, France, 7–9 July, 1992, pp. 259–255Google Scholar
  25. 25.
    Storozhenko, V.A., Melnik, S.I., Orel, R.P.: A new algorithm of thermal tomography. Methods and instrumentation of quality inspection. No. 4, pp. 26–30 (1999, in Ukrainian)Google Scholar
  26. 26.
    Winfree, W.P., Plotnikov, Yu.: Defect characterization in composites using a thermal tomography algorithm. In: Thompson, R., Chimenti, D. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 18, pp. 1343–1350. Kluwer Academic/Plenum Publishers, New York (1999)CrossRefGoogle Scholar
  27. 27.
    Kush, D.V., Rapoport, D.A., Budadin, O.N.: Inverse problem of automated thermal testing. Defectoscopiya 5, 64–68 (1988). (in Russian) Google Scholar
  28. 28.
    Bakirov, V.F., Kline, R.A.: Diffusion-based thermal tomography. J. Heat Transf. 127, 1276–1279 (2005)CrossRefGoogle Scholar
  29. 29.
    Hyvönen, N., Mustonen, L.: Thermal tomography with unknown boundary. arXiv:1611.06862v2 [math. NA]. (2017).
  30. 30.
    Toivanen, J.M., Kolehmainen, V., Tarvainen, T., Orlande, H.R.B., Kaipio, J.P.: Simultaneous estimation of spatially distributed thermal conductivity, heat capacity and surface heat transfer coefficient in thermal tomography. Int. J. Heat Mass Transf. 55, 7958–7968 (2012)CrossRefGoogle Scholar
  31. 31.
    Toivanen, J.M., Tarvainen, T., Huttunen, J.M.J., Savolainen, T., Orlande, H.R.B., Kaipio, J.P., Kolehmainen, V.: 3D thermal tomography with experimental measurement data. Int. J. Heat Mass Transf. 78, 1126–1134 (2014)CrossRefGoogle Scholar
  32. 32.
    Vavilov, V.P.: Modeling thermal NDT problems. Int. J. Heat Mass Transf. 72, 75–86 (2014)CrossRefGoogle Scholar
  33. 33.
    Vavilov, V.P.: Modeling and characterizing impact damage in carbon fiber composites by thermal/infrared non-destructive testing. Composites B 61, 1–10 (2014)CrossRefGoogle Scholar
  34. 34.
    Vavilov, V.P., Plesovskikh, A.V., Chulkov, A.O., Nesteruk, D.A.: A complex approach to the development of the method and equipment for thermal nondestructive testing of CFRP cylindrical parts. Composites B 68, 375–384 (2015)CrossRefGoogle Scholar
  35. 35.
    Vavilov, V.P.: Thermal/infrared testing. In: Kluev, V.V. (ed.) Nondestructive Testing Handbook, pp. 1–485. Spektr Publisher, Moscow (2009)Google Scholar
  36. 36.
    Vavilov, V.P., Pawar, S.: Determining the lateral size of subsurface defects using active thermal nondestructive testing. Russ. J. NDT 52(9), 528–531 (2016)Google Scholar
  37. 37.
    Krapez, J.-C., Balageas, D.L.: Early detection of thermal contrast in pulsed stimulated infrared thermography. In: Proceedings of Quantitative Infrared Thermography QIRT-94, Eurotherm Seminar #42, Sorrento, Italy, 1994, pp. 260–266Google Scholar
  38. 38.
    Balageas, D.L., Krapez, J.-C., Cielo, P.: Pulsed photo-thermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)CrossRefGoogle Scholar
  39. 39.
    Balageas, D.L., Deom, A.A., Boscher, D.M.: Characterisation and NDT of carbon epoxy composites by a pulsed photothermal method. Mater. Eval. 45(4), 461–465 (1987)Google Scholar
  40. 40.
    Shepard, S.M., Hou, Y., Ahmed, T., Lhota, J.R.: Reference-free analysis of flash thermography data. In: Proceedings of SPIE “Thermosense-XXVIII”, vol. 6205, 2006, p. 620513Google Scholar
  41. 41.
    Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D., Ahmed, T.: Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42(5), 1337–1342 (2003)CrossRefGoogle Scholar
  42. 42.
    Sun, J.G.: Method for thermal tomography of thermal effusivity from pulsed thermal imaging. US Patent 7,365,330, 2006Google Scholar
  43. 43.
    Sun, J.G.: Method for implementing depth deconvolution algorithm for enhanced thermal tomography 3D imaging. U.S. Patent 8,465,200, 2013Google Scholar
  44. 44.
    Sun, J.G.: Quantitative three-dimensional imaging of heterogeneous materials by thermal tomography. J. Heat Transf. 138, 112004-1–112004-10 (2016)CrossRefGoogle Scholar
  45. 45.
    Three-Dimensional Thermal Tomography (3DTT) Advances Cancer Treatment. US Dept. of Energy, Argonne National Lab, USA, September 2012Google Scholar
  46. 46.
    Harris, A.W., Drube, L.: Thermal tomography of asteroid surface structure. Astrophys. J. (2016).  https://doi.org/10.3847/0004-637X/832/2/127 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.National Tomsk State UniversityTomskRussia

Personalised recommendations