Advertisement

Air-Coupled Nondestructive Evaluation Dissected

  • Mohammad Said HarbEmail author
  • Fuh-Gwo Yuan
Article

Abstract

This work develops a two-dimensional theoretical model to simulate the behavior of a fully non-contact air-coupled nondestructive evaluation system for a thin isotropic plate. The model is divided into transmission, guided wave propagation and reception phase. The validation of the complete model was carried out by modeling the same system by means of finite element method using a Multiphysics software. In addition, the dependency of the generated Lamb waves on different transmitter’s parameters and incidence angle is thoroughly investigated. The results of the acoustic pressure excited by the transducer, the out-of-plane velocity amplitudes for the generated first antisymmetric Lamb wave mode, and the radiated pressure from the plate caused by the leaky Lamb wavefield were all compared between the two models and a reasonable degree of similarity was found.

Keywords

Air-coupled ultrasound Nondestructive testing Lamb waves Acoustic field modeling 

References

  1. 1.
    Lamb, H.: On waves in an elastic plate. Proc. R. Soc. 93, 114–128 (1917)CrossRefGoogle Scholar
  2. 2.
    Ultrasonic Testing Market by Type (Time-of-Flight Diffraction, Phased Array, Immersion Testing, Guided-Wave), Equipment (Flaw Detectors, Tube Inspection, Transducers Probes, Bond testers), Service, Vertical, and Geography—Global Forecast to 2022. marketsandmarkets 2016; SE 4519Google Scholar
  3. 3.
    Nayfeh, H.A., Chimenti, E.D.: Free wave propagation in plates of general anisotropic media. J. Appl. Mech. 56, 881–886 (1989)CrossRefGoogle Scholar
  4. 4.
    Nayfeh, H.A.: The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89, 1521–1531 (1991)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Yuan, G.F.: Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments. Compos. Sci. Technol. 67, 1370–1384 (2007)CrossRefGoogle Scholar
  6. 6.
    Gholizadeh, S.: A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 1, 50–57 (2016)CrossRefGoogle Scholar
  7. 7.
    Jolly, M., Prabhakar, A., Sturzu, B., Hollstein, K., Singh, R., Thomas, S., et al.: Review of non-destructive testing (NDT) techniques and their applicability to thick walled composites. Procedia CIRP 38, 129–136 (2015)CrossRefGoogle Scholar
  8. 8.
    Raišutis, R., Jasiūnienė, E., Šliteris, R., Vladišauskas, A.: The review of non-destructive testing techniques suitable for inspection of the wind turbine blades. Ultragarsas 63, 26–30 (2008)Google Scholar
  9. 9.
    Chimenti, D.E.: Review of air-coupled ultrasonic materials characterization. Ultrasonics 54, 1804–1816 (2014)CrossRefGoogle Scholar
  10. 10.
    Harb, M.S., Yuan, F.G.: Barely visible impact damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 16, 663–673 (2017)CrossRefGoogle Scholar
  11. 11.
    Harb, M.S., Yuan, F.G.: Non-contact ultrasonic technique for Lamb wave characterization in composite plates. Ultrasonics 64, 162–169 (2016)CrossRefGoogle Scholar
  12. 12.
    Harb, M.S., Yuan, F.: Damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 15, 193–203 (2016)CrossRefGoogle Scholar
  13. 13.
    He, J., Yuan, F.: A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan. Smart Mater. Struct. 25, 105022 (2016)CrossRefGoogle Scholar
  14. 14.
    He, J., Yuan, F.: Lamb wave-based BVID imaging for a curved composite sandwich panel. AIP Conf. Proc. 1806, 050012 (2017)CrossRefGoogle Scholar
  15. 15.
    Cheng, L., Tian, G.Y.: Comparison of nondestructive testing methods on detection of delaminations in composites. J. Sens. (2012).  https://doi.org/10.1155/2012/408437 CrossRefGoogle Scholar
  16. 16.
    Green Jr., R.E.: Non-contact ultrasonic techniques. Ultrasonics 42, 9–16 (2004)CrossRefGoogle Scholar
  17. 17.
    Reynolds, W.: Nondestructive testing (NDT) of fibre-reinforced composite materials. Mater. Des. 5, 256–270 (1984)CrossRefGoogle Scholar
  18. 18.
    Scott, I., Scala, C.: A review of non-destructive testing of composite materials. NDT Int. 15, 75–86 (1982)CrossRefGoogle Scholar
  19. 19.
    Adams, R., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988)Google Scholar
  20. 20.
    Tiwari, K.A., Raisutis, R.: Comparative analysis of non-contact ultrasonic methods for defect estimation of composites in remote areas. CBU Int. Conf. Proc. 4, 846–851 (2016)CrossRefGoogle Scholar
  21. 21.
    Altabey, W.A., Noori, M.: An extensive overview of lamb wave technique for detecting fatigue damage in composite structures. Ind. Syst. Eng. 2, 1–20 (2017)Google Scholar
  22. 22.
    Michaels, J.E.: Ultrasonic wavefield imaging: research tool or emerging NDE method? AIP Conf. Proc. 1806, 020001 (2017)CrossRefGoogle Scholar
  23. 23.
    Castaings, M., Hosten, B.: Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT E Int. 34, 249–258 (2001)CrossRefGoogle Scholar
  24. 24.
    Castaings, M., Hosten, B.: The use of electrostatic, ultrasonic, air-coupled transducers to generate and receive Lamb waves in anisotropic, viscoelastic plates. Ultrasonics 36, 361–365 (1998)CrossRefGoogle Scholar
  25. 25.
    Harb, M.S., Yuan, F.G.: A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. Ultrasonics 61, 62–70 (2015)CrossRefGoogle Scholar
  26. 26.
    Dayal, V., Kinra, V.K.: Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments. J. Acoust. Soc. Am. 85, 2268–2276 (1989)CrossRefGoogle Scholar
  27. 27.
    Dayal, V., Kinra, V.K.: Leaky Lamb waves in an anisotropic plate. II: Nondestructive evaluation of matrix cracks in fiber-reinforced composites. J. Acoust. Soc. Am. 89, 1590–1598 (1991)CrossRefGoogle Scholar
  28. 28.
    Hosten, B., Biateau, C.: Finite element simulation of the generation and detection by air-coupled transducers of guided waves in viscoelastic and anisotropic materials. J. Acoust. Soc. Am. 123, 1963–1971 (2008)CrossRefGoogle Scholar
  29. 29.
    Fan, Z., Jiang, W., Cai, M., Wright, W.M.: The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics 65, 282–295 (2016)CrossRefGoogle Scholar
  30. 30.
    Viktorov, I.A.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press, New York (1967)CrossRefGoogle Scholar
  31. 31.
    Ditri, J.J., Rose, J.L.: Excitation of guided waves in generally anisotropic layers using finite sources. J. Appl. Mech. 61, 330–338 (1994)CrossRefGoogle Scholar
  32. 32.
    Schmerr, L.W.: Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach. Plenum Press, New York (1998)CrossRefGoogle Scholar
  33. 33.
    Wooh, S., Shi, Y.: Optimum beam steering of linear phased arrays. Wave Motion 29, 245–265 (1999)CrossRefGoogle Scholar
  34. 34.
    Wooh, S., Shi, Y.: Influence of phased array element size on beam steering behavior. Ultrasonics 36, 737–749 (1998)CrossRefGoogle Scholar
  35. 35.
    Shung, K.K., Smith, M.B., Tsui, B.: Principles of Medical Imaging. Academic Press, New York (1992)Google Scholar
  36. 36.
    Ditri, J.J., Rajana, K.: An experimental study of the angular dependence of Lamb wabe excitation amplitudes. J. Sound Vib. 204, 755–768 (1997)CrossRefGoogle Scholar
  37. 37.
    Ditri, J.J., Rose, L.J.: Excitation of guided waves in generally anisotropic layers using finite sources. Am. Soc. Mech. Eng. 61, 330–338 (1994)zbMATHGoogle Scholar
  38. 38.
    Jia, X.: Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers. Acoust. Soc. Am. 101, 834–842 (1997)CrossRefGoogle Scholar
  39. 39.
    Moulin, E., Assaad, J., Delebarre, C., Grondel, S., Balageas, D.: Modeling of integrated Lamb waves generation systems using a coupled finite element–normal modes expansion method. Ultrasonics 38, 522–526 (2000)CrossRefGoogle Scholar
  40. 40.
    Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmerican University of BeirutBeirutLebanon
  2. 2.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations