Measurement of Interfacial Fracture Toughness of Surface Coatings Using Pulsed-Laser-Induced Ultrasonic Waves

Article
  • 28 Downloads

Abstract

This research develops a new technique for the measurement of interfacial fracture toughness of films/surface coatings using laser-induced ultrasonic waves. Using pulsed laser ablation on the bottom substrate surface, strong stress waves are generated leading to interfacial fractures and coating delamination. Simultaneously, a laser ultrasonic interferometer is used to measure the normal (out-of-plane) displacement of the top surface coating in order to detect coating delamination in a non-destructive manner. We can thus determine the critical laser energy for delamination, yielding the critical stress (that is, the interfacial strength). Subsequently, to examine the interfacial fracture toughness, additional pulsed laser irradiation is applied to a pre-delaminated specimen to show that the delamination area expands. This type of interfacial crack growth can be visualized using laser ultrasonic scanning. Furthermore, the calculation of elastic wave propagation was carried out using a finite-difference time-domain method) in order to accurately estimate the interfacial stress field. In this calculation, the stress distribution around the initial delamination is calculated to obtain the stress intensity factor. Based on the experimental and computational results, interfacial fracture toughness can be quantitatively evaluated. Since this technique relies on a two-laser system in a non-contact approach, it may be useful for a quantitative evaluation of adhesion/bonding quality (including both interfacial fracture strength and toughness) in various environments.

Keywords

Pulsed-laser-induced ultrasonic wave Delamination Interfacial fracture toughness Surface coating 

Notes

Acknowledgements

We would like to thank Professor Hideo Cho (Aoyama Gakuin University, Japan) for his guidance. The work of A.Y. is supported by JSPS KAKENHI (Grant Nos. 26420025 and 17K06062) from the Japan Society for the Promotion of Science (JSPS) and by a Research Grant from JFE 21st Century Foundation.

References

  1. 1.
    Lacombe, R.H.: Adheision Mesurement Methods: Theory and Practice. CRC Press, Boca Raton (2006)Google Scholar
  2. 2.
    Zhou, L.M., Kim, J.K., Baillie, C., Mai, Y.W.: Fracture mechanics analysis of the fibre fragmentation test. J. Compos. Mater. 29, 881–902 (1995)CrossRefGoogle Scholar
  3. 3.
    Varna, J., Joffe, R., Berglund, L.A.: Interfacial toughness evaluation from the sigle-fiber fragmentation test. Compos. Sci. Technol. 56, 1105–1109 (1996)CrossRefGoogle Scholar
  4. 4.
    Arai, M.: Interfacial fracture toughness evaluation of ceramic thermal barrier coatings based on indentation test method. J. Soc. Mater. Sci. 58, 917–923 (2009)CrossRefGoogle Scholar
  5. 5.
    Chicot, D., Demarecaux, P., Lesage, J.: Apparent interface toughness of substrate and coating couples from indentation tests. Thin Solid Films 283, 151–157 (1996)CrossRefGoogle Scholar
  6. 6.
    Vlassak, J.J., Lin, Y., Tsui, T.Y.: Fracture of organosilicate glass thin films: environmental effects. Mater. Sci. Eng. A 391, 159–174 (2005)CrossRefGoogle Scholar
  7. 7.
    Tsui, T.Y., McKerrow, A.J., Vlassak, J.J.: The effect of water diffusion on the adhesion of organosilicate glass film stacks. J. Mech. Phys. Solids 54, 887–903 (2006)CrossRefGoogle Scholar
  8. 8.
    Hirakata, H., Yamada, T., Nobuhara, Y., et al.: Hydrogen effect on fracture toughness of thin film/substrate interfaces. Eng. Fract. Mech. 77, 803–818 (2010)CrossRefGoogle Scholar
  9. 9.
    Hinkley, J.: A blister test for adhesion of polymer films to SiO\(_2\). J. Adhes. 16, 115–125 (1983)CrossRefGoogle Scholar
  10. 10.
    Bagchi, A., Lucas, G.E., Suo, Z., Evans, A.G.: A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9, 1734 (1996)CrossRefGoogle Scholar
  11. 11.
    Modi, M., Sitaraman, S.K.: Interfacial fracture toughness measurement of a Ti/Si interface. J. Electron. Packag. 126, 301 (2004)CrossRefGoogle Scholar
  12. 12.
    Zheng, J., Sitaraman, S.K.: Fixtureless superlayer-driven delamination test for nanoscale thin-film interfaces. Thin Solid Films 515, 4709–4716 (2007)CrossRefGoogle Scholar
  13. 13.
    Wang, J., Weaver, R.L., Sottos, N.R.: Tensile and mixed-mode strength of a thin film-substrate interface under laser induced pulse loading. J. Mech. Phys. Solids 52, 999–1022 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Weaver, R.L., Sottos, N.R.: A parametric study of laser induced thin film spallation. Exp. Mech. 42, 74–83 (2002)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Weaver, R., Sottos, N.R.: Laser-induced decompression shock development in fused silica. J. Appl. Phys. 83, 9529–9536 (2003)CrossRefGoogle Scholar
  16. 16.
    Gupta, V., Hernandez, R., Wu, J., Charconnet, P.: Interfacial adhesion and its degradation in selected metal/oxide and dielectric/oxide interfaces in multi-layer devices. Vacuum 59, 292–300 (2000)CrossRefGoogle Scholar
  17. 17.
    Gupta, V., Argon, A.S., Cornie, J.A., Parks, D.M.: Measurement of interface strength by laser-pulse-induced spallation. Mater. Sci. Eng. A 126, 105–117 (1990)CrossRefGoogle Scholar
  18. 18.
    Gupta, V., Argon, A.S., Cornie, J.A., et al.: Measurement of interface strength by a laser spallation technique. J. Mech. Phys. Solids 40, 141–180 (1992)CrossRefGoogle Scholar
  19. 19.
    Gupta, V., Yuan, J., Pronin, A.: Recent developments in the laser spallation technique to measure the interface strength and its relationship to interface toughness with applications to metal/ceramic, ceramic/ceramic and ceramic/polymer interfaces. J. Adhes. Sci. Technol. 8, 713–747 (1994)CrossRefGoogle Scholar
  20. 20.
    Yuan, J., Gupta, V.: The effect of microstructure and chemistry on the tensile strength of Nb/sapphire interfaces with and without interlayers of Sb and Cr. Acta Metall. Mater. 43, 781–794 (1995)CrossRefGoogle Scholar
  21. 21.
    Yuan, J., Gupta, V.: Measurement of interface strength by the modified laser spallation technique. I. Experiment and simulation of the spallation process. J. Appl. Phys. 74, 2388 (1993)CrossRefGoogle Scholar
  22. 22.
    Yuan, J., Gupta, V., Promin, A.: Measurement of interface strength by the modified laser spallation technique. III. Experimental optimization of the stress pulse. J. Appl. Phys. 74, 2405 (1993)CrossRefGoogle Scholar
  23. 23.
    Yuan, J., Gupta, V.: Measurement of interface strength by the modified laser spallation technique, II applications to metal/ceramic interfaces. J. Appl. Phys. 74, 2397 (1993)CrossRefGoogle Scholar
  24. 24.
    Boustie, M., Auroux, E., Romain, J.P., et al.: Determination of the bond strength of some microns coatings using the laser shock technique European. Phys. J. Appl. Phys. 5, 149–153 (1999)CrossRefGoogle Scholar
  25. 25.
    Bolis, C., Berthe, L., Boustie, M., et al.: Physical approach to adhesion testing using laser-driven shock waves. J. Phys. D 40, 3155 (2007)CrossRefGoogle Scholar
  26. 26.
    Dias, R.: Investigation of interfaces with analytical tools. IEEE Trans. Device Mater. Reliab. 3, 179 (2003)CrossRefGoogle Scholar
  27. 27.
    Vossen, J.L.: Adhesion measurement of thin films, thick films and bulk coatings. Am. Soc. Test. Mater. STP 640, 122–133 (1978)Google Scholar
  28. 28.
    Ikeda, R., Uchiyama, T., Cho, H., et al.: An advanced method for measuring the residual stress of deposited film utilizing laser spallation technique. J. Sci. Technol. Adv. Mater. 7, 90–96 (2006)CrossRefGoogle Scholar
  29. 29.
    Ikeda, R., Tasaka, S., Cho, H., Takemoto, M.: Evaluation of adhesive strength of chemical vapor deposition diamond films by laser spallation. Jpn. J. Appl. Phys. 43, 3123–3126 (2004)CrossRefGoogle Scholar
  30. 30.
    Ikeda, R., Cho, H., sawabe, A., Takemoto, M.: Laser spallation method to measure strength against Mode-I decohesion of CVD diamond films. Diam. Relat. Mater. 14, 631–636 (2005)CrossRefGoogle Scholar
  31. 31.
    Kandula, S.V., Cheryl, D.H., Geubelle, P.H., Sottos, N.R.: Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique. Thin Solid Films 516, 7627–7635 (2008)CrossRefGoogle Scholar
  32. 32.
    Ito, H., Kiminami, S., Chuo, H.: Evaluation of adhesion quality of oxide scale on low carbon steel at high temperature using a laser spallation technique. Trans. JSME (Japanese) 81, 1–12 (2015)Google Scholar
  33. 33.
    Watanabe, Y., Fujisawa, S., Yonezu, A., Chen, X.: Quantitative evaluation of adhesion quality of surface coating by using pulse laser-induced ultrasonic waves. Surf. Coat. Technol. 286, 231–238 (2016)CrossRefGoogle Scholar
  34. 34.
    Bucaille, J.-L., Stauss, S., Schawaller, P., Michler, J.: A new technique to determine the elastoplastic properties of thin metallic films using sharp indenters. Thin Solid Films 447–448, 239–245 (2004)CrossRefGoogle Scholar
  35. 35.
    Berthe, L., Fabbro, R., Peyre, P., et al.: Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 82, 2826–2832 (1997)CrossRefGoogle Scholar
  36. 36.
    Fabbro, R., Fouriner, J., Ballard, P., et al.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990)CrossRefGoogle Scholar
  37. 37.
    Mur, G.: Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. Electromagn. Compat. EMC–23, 377–382 (1981)CrossRefGoogle Scholar
  38. 38.
    Yuuki, R., Xu, J.: Mechnics of interfacial crack. Prod. Res. 42, 60–66 (1993). (in Japanese)Google Scholar
  39. 39.
    Dundurs, J.: Boundary conditions at interfaces. Micromech. Inhomog. 109–114 (1990)Google Scholar
  40. 40.
    Malyshev, B.M., Salganik, R.L.: The strength of adhesive joints using the theory of cracks. Int. J. Fract. Mech. 1, 114–128 (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Precision MechanicsChuo UniversityBunkyoJapan
  2. 2.International Center for Applied Mechanics, SV Lab, School of AerospaceXi’an Jiaotong UniversityXi’anChina
  3. 3.Department of Earth and Environmental EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations