Advertisement

Determination of Moisture Content in Ceramic Brick Walls Using Ground Penetration Radar

  • G. P. Cetrangolo
  • L. D. Domenech
  • G. Moltini
  • A. A. Morquio
Article

Abstract

The moisture content in ceramic masonry plays an important role in their performance and durability, also serviceability is severely affected by moisture. The presence of moisture represents one of the major issues associated with structures fabricated with ceramic masonry. The intrinsic characteristic of the material along with the age of the structure plays an important role in the amount of moisture absorbed by the walls. Traditional methods for determining the moisture content of in-situ masonry walls are many times destructive or semi-destructive and provide limited information. In this study, ground penetrating radar is used as a non-destructive technique for measuring the moisture content in ceramic masonry walls. Control samples were used as calibration in the laboratory and field measurements were performed to determine the moisture content of the ceramic walls. The developed methodology was applied to real size ceramic walls, were in-situ measurements showed areas with different moisture levels. The methodology developed showed to be fast and easy to use in the field for measuring the moisture content of ceramic brick walls.

Keywords

Ceramic brick walls Moisture Ground penetrating radar NDT 

Notes

Acknowledgements

The authors are most grateful to Dr. Alina Aulet and Lucia Fiori, for their assistance in the experimental face of the study and to the Comisión Sectorial de Investigación Científica de la Universidad de la República, for the support in the Project I+D 2013.

References

  1. 1.
    Mas-Guindal, A.J.: La concepción estructural de la fábrica en la arquitectura. Inf. Constr. 56(496), 109–124 (2005)Google Scholar
  2. 2.
    RILEM TC 177-MDT 2005. MD.E.1: Determination of moisture distribution and level using radar in masonry built with regular units. Mater. Struct. 38, 283–288 (2005)Google Scholar
  3. 3.
    Binda, L., Colla, C., Forde, M.C.: Identification of moisture capillarity in masonry using digital impulse radar. Constr. Build. Mater. 8(2), 101–107 (1994)CrossRefGoogle Scholar
  4. 4.
    Moriconi, M., Castellano, M.G., Collepardi, M.: Mortar deterioration of the masonry walls in historic buildings. A case history: Vanvitelli’s Mole in Ancona. Mater. Struct. 27(7), 408–414 (1994)CrossRefGoogle Scholar
  5. 5.
    Gea, S., Quinteros, R., Nallim, L.: Control del proceso de deshumidificación de muros con georradar. Un edificio patrimonial como caso de studio. In: Proceedings of International Symposium on XII Congreso latinoamericano de Patología (ConPat 2013), Cartagena de Indias, Colombia, 30 September–4 October 2013, ColombiaGoogle Scholar
  6. 6.
    Tosti, F., Slob, E.: Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. In: Benedetto, A., Pajewskki, L. (eds.) Civil Engineering Applications of Ground Penetrating Radar, pp. 163–194. Springer, Switzerland (2015)Google Scholar
  7. 7.
    Maierhofer, C.: Combination of non-destructive testing methods for the assessment of masonry structures. In: Proceedings of International RILEM Symposium on Site Assessment of Concrete, Masonry and Timber Structures (SACoMaTiS 2008), Varenna, Italy, 1–2 September 2008. RILEM Publications SARL, France (2008)Google Scholar
  8. 8.
    Maierhofer, C., Leipold, S.: Radar investigation of masonry structures. NDT & E Int. 34(2), 139–147 (2001)CrossRefGoogle Scholar
  9. 9.
    Binda L, Maierhofer C.: Strategies for the assessment of historic masonry structures. In: Proceedings of International Symposium on RILEM/NSF International Engineering Research and Education Workshop ‘In-situ Evaluation of Masonry and Wood Historic Structures: Challenges and Opportunities’, Prague, Czech Republic, 10–14 July 2006. RILEM Publications SARL, France (2009)Google Scholar
  10. 10.
    Bungey, J.H., Millard, S.G., Grantham, M.G.: Testing of Concrete in Structures, 4th edn. Taylor & Francis, Boca Raton, FL (2006)Google Scholar
  11. 11.
    Malhotra, V.M., Carino, N.J.: Handbook on Nondestructive Testing of Concrete, 2nd edn. CRC Press, Boca Raton, FL (2004)Google Scholar
  12. 12.
    Angeliki, A., Fokaides, P.A., Christou, P., Kalogirou, S.A.: Infrared thermography (IRT) applications for building diagnostics: a review. Appl. Energy 134, 531–549 (2014)CrossRefGoogle Scholar
  13. 13.
    Colla, C., McCann, D.M., Forde, M.C.: Radar testing of a masonry composite structure with sand and water backfill. J. Bridge Eng. 6(4), 262–270 (2001)CrossRefGoogle Scholar
  14. 14.
    Binda, L., Lenzi, G., Saisi, A.: NDE of masonry structures: use of radar test for the characterisation of stone masonries. In: Proceedings of the Seventh International Conference on Structural Faults and Repair (1997)Google Scholar
  15. 15.
    Shuller, M.P.: Nondestructive testing and damage assessment of masonry structures. In: Proceedings of International Symposium on RILEM/NSF International Engineering Research and Education Workshop ‘In-situ Evaluation of Masonry and Wood Historic Structures: Challenges and Opportunities’, Prague, Czech Republic, 10–14 July 2006. RILEM Publications SARL, France (2009)Google Scholar
  16. 16.
    Valle, S., Zanzi, L., Rocca, F.: Radar tomography for NDT: comparison of techniques. J. Appl. Geophys. 41(2,3), 259–269 (1999)CrossRefGoogle Scholar
  17. 17.
    Saisi, A., Valle, S., Zanzi, L., Binda, L.: Radar and sonic as complementary and/or alternative tests in the survey of structures. In: Proceedings of the International Millennium Congress, Archi (2000)Google Scholar
  18. 18.
    Schuller, M.P.: Non-destructive testing and damage assessment of masonry structures. Prog. Struct. Eng. Mater. 5(4), 239–251 (2003)CrossRefGoogle Scholar
  19. 19.
    Maierhofer, Ch., Wöstmann, J.: Investigation of dielectric properties of brick materials as a function of moisture and salt content using a microwave impulse technique at very high frequencies. NDT & E Int. 31(4), 259–263 (1998)CrossRefGoogle Scholar
  20. 20.
    Binda, L., Saisi, A., Tiraboschi, C., Valle, S., Colla, C., Forde, M.: Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr. Build. Mater. 17(8), 613–627 (2003)CrossRefGoogle Scholar
  21. 21.
    Diamanti, N., Giannopoulos, A., Forde, M.: Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT & E Int. 41, 354–363 (2008)CrossRefGoogle Scholar
  22. 22.
    Binda, L., Lualdi, M., Saisi, A., Zanzi, L.: The complementary use of on site non-destructive tests for the investigation of historic masonry structures. In: Proceedings of the Ninth North American Masonry Conference (2003)Google Scholar
  23. 23.
    Lai, W.L., Kind, T., Wiggenhauser, H.: Using ground penetrating radar and time-frequency analysis to characterize construction materials. NDT & E Int. 44, 111–120 (2011)CrossRefGoogle Scholar
  24. 24.
    Annan, A.P.: Electromagnetic principles of ground penetrating radar (chapter 1). In: Jol, H.M. (ed.) Ground Penetrating Radar: Theory and Applications, pp. 3–40. Elsevier Science, Oxford (2009)Google Scholar
  25. 25.
    Davis, J.L., Annan, A.P.: Ground penetrating radar to measure soil water content. In: Dane, J.H., Topp, G.C., (eds.): Methods of Soil Analysis, Part 4: Physical Method, pp. 446–463. Soil Science Society of America, Fitchburg, WI. Elsevier Science, Oxford (2002)Google Scholar
  26. 26.
    Laurens, S., Balayssac, J.P., Rhazi, J., Klysz, G., Arliguie, G.: Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Mater. Struct. 38, 827–832 (2005)CrossRefGoogle Scholar
  27. 27.
    De Loor, G.P.: The dielectric properties of wet materials. IEEE Trans. Geosci. Remote Sens. 21(3), 364–369 (1983)CrossRefGoogle Scholar
  28. 28.
    Barnes, C.L., Trottier, J.F., Forgeron, D.: Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT & E Int. 41, 427–433 (2008)CrossRefGoogle Scholar
  29. 29.
    Gallagher, G.P., Leiper, Q., Williamson, R., Clark, M.R., Forde, M.C.: The application of time domain ground penetrating radar to evaluate rail way track ballast. NDT & E Int. 32, 463–468 (1999)CrossRefGoogle Scholar
  30. 30.
    Lai, W., Kind, T., Kruschwitz, S., Wöstmann, J., Wiggenhauser, H.: Spectral absorption of spatial and temporal ground penetrating radar signals by water in construction materials. NDT & E Int. 67, 55–63 (2014)CrossRefGoogle Scholar
  31. 31.
    Cetrangolo, G.P., Moltini, G., Domenech, L.D., Fiori, L., Aulet, A.B., Morquio, A.A.: Cuantificación del Contenido de Humedad en Ladrillos Utilizando Radar Penetrante de Tierra. In: Proceedings of International Symposium on XIII Congreso latinoamericano de Patología (ConPat 2015), 8–10 September, Lisboa, PortugalGoogle Scholar
  32. 32.
    Vereecken, E., Roels, S.: Hygric performance of a massive masonry wall: How do the mortar joints influence the moisture flux? Constr. Build. Mater. 41, 697–707 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto de Estructuras y Transporte, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations