GDXray: The Database of X-ray Images for Nondestructive Testing

  • Domingo MeryEmail author
  • Vladimir Riffo
  • Uwe Zscherpel
  • German Mondragón
  • Iván Lillo
  • Irene Zuccar
  • Hans Lobel
  • Miguel Carrasco


In this paper, we present a new dataset consisting of 19,407 X-ray images. The images are organized in a public database called \(\mathbb {GDX}\)ray that can be used free of charge, but for research and educational purposes only. The database includes five groups of X-ray images: castings, welds, baggage, natural objects and settings. Each group has several series, and each series several X-ray images. Most of the series are annotated or labeled. In such cases, the coordinates of the bounding boxes of the objects of interest or the labels of the images are available in standard text files. The size of \(\mathbb {GDX}\)ray is 3.5 GB and it can be downloaded from our website. We believe that \(\mathbb {GDX}\)ray represents a relevant contribution to the X-ray testing community. On the one hand, students, researchers and engineers can use these X-ray images to develop, test and evaluate image analysis and computer vision algorithms without purchasing expensive X-ray equipment. On the other hand, these images can be used as a benchmark in order to test and compare the performance of different approaches on the same data. Moreover, the database can be used in the training programs of human inspectors.


X-ray testing Datasets X-ray images Computer vision Image analysis 



Fondecyt Grant No. 1130934 from CONICYT–Chile.


  1. 1.
    Carrasco, M., Mery, D.: Segmentation of welding defects using a robust algorithm. Mater. Eval. 62(11), 1142–1147 (2004)Google Scholar
  2. 2.
    Carrasco, M., Mery, D.: Automatic multiple view inspection using geometrical tracking and feature analysis in aluminum wheels. Mach. Vis. Appl. 22(1), 157–170 (2011)CrossRefGoogle Scholar
  3. 3.
    Damashek, A., Doherty, J.: Detecting guns using parametric edge matching. Tech. Rep. Project for Computer Vision Course: CS231A, Stanford University (2015)Google Scholar
  4. 4.
    Ghoreyshi, A., Vidal, R., Mery, D.: Segmentation of circular casting defects using a robust algorithm. Insight-Non-Destruct. Test. Cond. Monit. 47(10), 615–617 (2005)CrossRefGoogle Scholar
  5. 5.
    Hernández, S., Sáez, D., Mery, D., da Silva, R., Sequeira, M.: Automated defect detection in aluminium castings and welds using neuro-fuzzy classifiers. In: Proceedings of the 16th World Conference on Non-destructive Testing (WCNDT–2004), Montreal (2004)Google Scholar
  6. 6.
    Huang, Q., Wu, Y., Baruch, J., Jiang, P., Peng, Y.: A template model for defect simulation for evaluating nondestructive testing in X-radiography. IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 39(2), 466–475 (2009)Google Scholar
  7. 7.
    Mery, D.: A new algorithm for flaw simulation in castings by superimposing projections of 3D models onto X-ray images. In: Proceedings of the XXI International Conference of the Chilean Computer Science Society (SCCC-2001), pp. 193–202. IEEE Computer Society Press, Punta Arenas (2001)Google Scholar
  8. 8.
    Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes in Computer Science, vol. 2749, pp. 725–732 (2003)Google Scholar
  9. 9.
    Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E Int. 36(8), 587–599 (2003)CrossRefGoogle Scholar
  10. 10.
    Mery, D.: Automated detection in complex objects using a tracking algorithm in multiple X-ray views. In: Proceedings of the 8th IEEE Workshop on Object Tracking and Classification Beyond the Visible Spectrum (OTCBVS 2011), in Conjunction with CVPR 2011, pp. 41–48. Colorado Springs (2011)Google Scholar
  11. 11.
    Mery, D.: Automated detection of welding defects without segmentation. Mater. Eval. 69(6), 657–663 (2011)Google Scholar
  12. 12.
    Mery, D.: Inspection of complex objects using multiple-X-ray views. IEEE/ASME Trans. Mechatron. 20(1), 338–347 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-Non-Destruct. Test. Cond. Monit. 45(10), 676–681 (2003)CrossRefGoogle Scholar
  14. 14.
    Mery, D., Carrasco, M.: Automated multiple view inspection based on uncalibrated image sequences. Lect. Notes Comput. Sci. 3540, 1238–1247 (2005)CrossRefGoogle Scholar
  15. 15.
    Mery, D., Chacón, M., Munoz, L., González, L.: Automated inspection of aluminium castings using fusion strategies. Mater. Eval. 63(2), 148–153 (2005)Google Scholar
  16. 16.
    Mery, D., Filbert, D.: The epipolar geometry in the radioscopy: theory and application. Automatisierungstechnik 48(12), 588–596 (2000). (in German)Google Scholar
  17. 17.
    Mery, D., Filbert, D.: A fast non-iterative algorithm for the removal of blur caused by uniform linear motion in X-ray images. In: Proceedings of the 15th World Conference on Non-destructive Testing (WCNDT–2000), Rome (2000)Google Scholar
  18. 18.
    Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)CrossRefGoogle Scholar
  19. 19.
    Mery, D., Filbert, D.: Automated inspection of moving aluminium castings. In: 8th European Conference on Non-destructive Testing (ECNDT 2002), Barcelona (2002)Google Scholar
  20. 20.
    Mery, D., Hahn, D., Hitschfeld, N.: Simulation of defects in aluminum castings using CAD models of flaws and real X-ray images. Insight 47(10), 618–624 (2005)CrossRefGoogle Scholar
  21. 21.
    Mery, D., Lillo, I., Riffo, V., Soto, A., Cipriano, A., Aguilera, J.: Automated fish bone detection using X-ray testing. J. Food Eng. 2011(105), 485–492 (2011)CrossRefGoogle Scholar
  22. 22.
    Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)CrossRefGoogle Scholar
  23. 23.
    Mery, D., Riffo, V., Mondragon, G., Zuccar, I.: Detection of regular objects in baggages using multiple X-ray views. Insight 55(1), 16–21 (2013)CrossRefGoogle Scholar
  24. 24.
    Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an efficient search algorithm in multiple views. In: Proceedings of the 9th IEEE CVPR Workshop on Perception Beyond the Visible Spectrum, Portland (2013)Google Scholar
  25. 25.
    Mondragón, G., Leiva, G., Aguilera, J., Mery, D.: Automated detection of softening and hard columella in kiwifruits during postharvest using X-ray testing. In: Proceedings of International Congress on Engineering and Food (2011)Google Scholar
  26. 26.
    Perner, P., Zscherpel, U., Jacobsen, C.: A comparison between neural networks and decision trees based on data from industrial radiographic testing. Pattern Recogn. Lett. 22(1), 47–54 (2001)zbMATHCrossRefGoogle Scholar
  27. 27.
    Pieringer, C., Mery, D.: Flaw detection in aluminium die castings using simultaneous combination of multiple views. Insight 52(10), 548–552 (2010)Google Scholar
  28. 28.
    Pizarro, L., Mery, D., Delpiano, R., Carrasco, M.: Robust automated multiple view inspection. Pattern Anal. Appl. 11(1), 21–32 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ramírez, F., Allende, H.: Detection of flaws in aluminium castings: a comparative study between generative and discriminant approaches. Insight-Non-Destruct. Test. Cond. Monit. 55(7), 366–371 (2013)CrossRefGoogle Scholar
  30. 30.
    Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight 54(1), 28–35 (2012)CrossRefGoogle Scholar
  31. 31.
    da Silva, R.R., Siqueira, M.H., de Souza, M.P.V., Rebello, J.M., Calôba, L.P.: Estimated accuracy of classification of defects detected in welded joints by radiographic tests. NDT & E Int. 38(5), 335–343 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Domingo Mery
    • 1
    Email author
  • Vladimir Riffo
    • 1
    • 2
  • Uwe Zscherpel
    • 3
  • German Mondragón
    • 1
  • Iván Lillo
    • 1
  • Irene Zuccar
    • 4
  • Hans Lobel
    • 1
  • Miguel Carrasco
    • 5
  1. 1.Department of Computer SciencePontificia Universidad Católica de ChileSantiagoChile
  2. 2.Departamento de Ingeniería Informática y Ciencias de la Computación–Universidad de AtacamaCopiapóChile
  3. 3.BAM Federal Institute for Materials Research and TestingBerlinGermany
  4. 4.Departamento de Ingeniería Informática–Universidad de Santiago de ChileSantiagoChile
  5. 5.Faculty of Engineering and SciencesUniversidad Adolfo IbáñezSantiagoChile

Personalised recommendations