Journal of Nondestructive Evaluation

, Volume 33, Issue 2, pp 178–186 | Cite as

Effect of Localized Microstructure Evolution on Higher Harmonic Generation of Guided Waves

  • C. J. Lissenden
  • Y. Liu
  • G. W. Choi
  • X. Yao


The use of nonlinear ultrasonics to characterize microstructural evolution is investigated with the aim of enabling earlier remaining useful life prediction and thereby greatly improving condition based maintenance. Higher harmonic generation is sensitive to microstructural features, whose evolution is indicative of ongoing damage processes. Localized plastic deformation is controlled in an aluminum sample by varying the notch length, which dictates the extent of the plastic zone. The essentials of higher harmonic generation analysis for ultrasonic guided waves are highlighted to provide a means to select a primary mode that generates a strong higher harmonic. Experimental methods to use magnetostrictive transducers for third harmonic generation measurements are described. Experimental results on aluminum plates indicate that plastic deformation increases the third harmonic by up to a factor of five and that the harmonic amplitude ratio \(A_{3}\)/\(A_{1}^{3}\) is sensitive to the plastic strain magnitude. These initial results show that when the plastic strain is localized, the \(A_{3}\)/\(A_{1}^{3 }\) ratio appears to be proportional to the plastic zone-to-propagation distance ratio.


Ultrasonic guided waves Higher harmonic generation Localized plastic strain 



The authors want to thank Clayton Dickerson for conducting the mechanical loading experiments. This material is based upon work supported by the Nuclear Energy Universities Program under Award Number 00102946 and the National Science Foundation under Grant Number 1300562.


  1. 1.
    Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  2. 2.
    Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, Hoboken (1996)Google Scholar
  3. 3.
    Bond, L.J., Doctor, S.R., Griffin, J.W., Hull, A.B., Malik, S.N.: Damage assessment technologies for prognostics and proactive management of materials degradation. Nucl. Technol. 173, 46–55 (2011)Google Scholar
  4. 4.
    Turner, J.A., Weaver, R.L.: Time dependence of multiply scattered diffuse ultrasound in polycrystalline media. J. Acoust. Soc. Am. 97(5), 2639–2644 (1995)CrossRefGoogle Scholar
  5. 5.
    Panetta, P.D., Thompson, R.B.: Ultrasonic attenuation in duplex titanium alloys. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1717–1724. Plenum Press, New York (1999)CrossRefGoogle Scholar
  6. 6.
    Ramuhalli, P., Good, M.S., Harris, R,J., Bond, L.J., Ruud, C,O., Diaz, A.A., Anderson, M,T.: Methods for the in-situ characterization of cast austenitic stainless steel. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1089–1096. American Institute of Physics (2011)Google Scholar
  7. 7.
    Huang, M., Jiang, L., Liaw, P.K., Brooks, C.R., Seeley, R., Klarstrom, D.L.: Using acoustic emission in fatigue and fracture materials research. JOM-e 50(11), 1–2 (1998)Google Scholar
  8. 8.
    Sagar, S.P., Parida, N., Das, S., Dobmann, G., Bhattacharya, D.K.: Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int. J. Fatigue 27, 317–322 (2005)CrossRefGoogle Scholar
  9. 9.
    Liu, T., Kikuchi, H., Kamada, Y., Ara, K., Kobayashi, S., Takahashi, S.: Comprehensive analysis of Barkhausen noise properties in the cold rolled mild steel. J. Magn. Magn. Mater. 310, 989–991 (2007)Google Scholar
  10. 10.
    Kasai, N., Koshino, H., Sekine, K., Kihira, H., Takahashi, M.: Study on the effect of elastic stress and microstructure of low carbon steels on Barkhausen noise. J. Nondestruct. Eval. 32, 277–285 (2013)CrossRefGoogle Scholar
  11. 11.
    Raj, B., Moorthy, T., Jayakumar, T.: Assessment of microstructures and mechanical behavior of metallic materials through non-destructive evaluation. Int. Mater. Rev. 48, 273–325 (2003)CrossRefGoogle Scholar
  12. 12.
    Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)CrossRefGoogle Scholar
  13. 13.
    Kim, C.S., Kwun, S.I., Lissenden, C.J.: Influence of precipitates and dislocations on the acoustic nonlinearity in metallic materials. J. Korean Phys. Soc. 55, 528–532 (2009)CrossRefGoogle Scholar
  14. 14.
    Matlack, K.H., Wall, J.J., Kim, J.Y., Qu, J., Jacobs, L.J., Viehrig, H.W.: Evaluation of radiation damage using nonlinear ultrasound”. J. Appl. Phys. 111, 054911 (2012)CrossRefGoogle Scholar
  15. 15.
    Jhang, K.Y.: Nonlinear techniques for nondestructive assessment of micro damage in material: review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)CrossRefGoogle Scholar
  16. 16.
    Zheng, Y., Maev, R.G., Solodov, I.Y.: Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)CrossRefGoogle Scholar
  17. 17.
    Deng, M.: Cumulative second-harmonic generation of generalized Lamb-wave propagation in a solid waveguide. J. Phys. D 33, 207–215 (2000)CrossRefGoogle Scholar
  18. 18.
    de Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRefGoogle Scholar
  19. 19.
    Srivastava, A., Lanza di Scalea, F.: On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323, 932–943 (2009)CrossRefGoogle Scholar
  20. 20.
    Müller, M.F., Kim, J.Y., Qu, J., Jacobs, L.J.: Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141–2152 (2010)CrossRefGoogle Scholar
  21. 21.
    Chillara, V.K., Lissenden, C.J.: Interaction of guided wave modes in isotropic nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111(12), 124909 (2012)CrossRefGoogle Scholar
  22. 22.
    Liu, Y., Chillara, V.K., Lissenden, C.J.: On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332(19), 4517–4528 (2013)CrossRefGoogle Scholar
  23. 23.
    Liu, Y., Khajeh, E., Lissenden, C.J., Rose, J.L.: Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J. Acoust. Soc. Am. 133(5), 2541–2553 (2013)CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Lissenden, C.J., Rose, J.L.: Cumulative second harmonics in weakly nonlinear plates and shells. In: Kundu, T. (ed) Health Monitoring of Structural and Biological Systems, Proceedings of SPIE, Vol. 8695, paper 869528 (2013).Google Scholar
  25. 25.
    Liu, Y., Chillara, V.K., Lissenden, C.J., Rose, J.L.: Cubic nonlinear shear horizontal and Rayleigh Lamb waves in weakly nonlinear plates. J. Appl. Phys. 114, 114908 (2013)CrossRefGoogle Scholar
  26. 26.
    Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 144(2), 469–477 (1966)CrossRefGoogle Scholar
  27. 27.
    Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 151(2), 442–449 (1966)CrossRefGoogle Scholar
  28. 28.
    Borigo, C., Rose, J.L., Yan, F.: A spacing compensation factor for the optimization of guided wave annular array transducers. J. Acoust. Soc. Am. 133(1), 127–135 (2013) Google Scholar
  29. 29.
    Rose, J.L.: Ultrasonic waves in solid media. Cambridge University Press, Cambridge (1999)Google Scholar
  30. 30.
    Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007)CrossRefGoogle Scholar
  31. 31.
    Pruell, C., Kim, J.Y., Qu, J., Jacobs, L.J.: A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate. NDT&E Int. 42, 199–203 (2009)CrossRefGoogle Scholar
  32. 32.
    Choi, G., Liu, Y., Lissenden, C.J., Rose, J.L.: Influence of localized microstructure evolution on second harmonic generation of guided waves. In: Thompson, D.O., Chimenti, D.E. (ed) Review of Progress in Quantitative Nondestructive Evaluation (2014, in-press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsPenn State University ParkUSA

Personalised recommendations