Journal of Nondestructive Evaluation

, Volume 32, Issue 3, pp 300–314

Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)

Article

Abstract

Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant (AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. However, ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from the fiber addition disappears as the structure becomes old. The aim of this paper is monitoring GRC ageing by nondestructive evaluation (NDE) techniques. Two different NDE techniques—(1) nonlinear impact resonant acoustic spectroscopy analysis and (2) propagating ultrasonic guided waves—are used for this purpose. Both techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens, the aged specimens are found to exhibit more linear behavior, have more stiffness but less toughness. Finally, undisturbed fragments on the fracture surface from mechanical tests are inspected under the electron microscope, to understand the fundamental mechanisms that cause the change in the GRC behavior with ageing.

Keywords

Glass fiber reinforced Cement Material ageing Ultrasonic guided waves Nonlinear impact resonant acoustic spectroscopy Nondestructive evaluation 

References

  1. 1.
    Bentur, A., Fibre, M.S.: Reinforced Cementitious Composites, 2nd edn. Taylor and Francis, New York (2007) Google Scholar
  2. 2.
    Purnell, P., Short, N.R., Page, C.L.: A static fatigue model for the durability of glass fibre reinforced cement. J. Mater. Sci. 36(22), 5385–5390 (2001) CrossRefGoogle Scholar
  3. 3.
    Ferreira, J.G., Branco, F.A.: Structural application of GRC in telecommunication towers. Constr. Build. Mater. 21(1), 19–28 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bentur, A., Ben-Bassat, M., Schneider, D.: Durability of glass-fiber-reinforced cements with different alkali-resistant glass fibers. J. Am. Ceram. Soc. 68(4), 203–208 (1985) CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Liang, W., Hu, Y., Chen, Q., Frischat, G.H.: Development of a new alkali resistant coating. J. Sol-Gel Sci. Technol. 27(3), 309–313 (2003) CrossRefGoogle Scholar
  6. 6.
    Liang, W., Cheng, J., Hu, Y., Luo, H.: Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 37(4), 641–646 (2002) CrossRefGoogle Scholar
  7. 7.
    Payá, J., Bonilla, M., Borrachero, M.V., Monzó, J., Peris-Mora, E., Lalinde, L.F.: Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites. Waste Manag. 27(10), 1416–1421 (2007) CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Sun, W., Shang, L., Pan, G.: The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites. Cem. Concr. Res. 27(12), 1885–1891 (1997) CrossRefGoogle Scholar
  9. 9.
    Purnell, P., Short, N., Page, C.: Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis. Composites, Part A, Appl. Sci. Manuf. 32(12), 1777–1787 (2001) CrossRefGoogle Scholar
  10. 10.
    EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type test Google Scholar
  11. 11.
    Purnell, P.: Interpretation of climatic temperature variations for accelerated ageing models. J. Mater. Sci. 39(1), 113–118 (2004) CrossRefGoogle Scholar
  12. 12.
    Enfedaque, A., Sánchez Paradela, L., Sánchez-Gálvez, V.: An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC). Constr. Build. Mater. 27(1), 425–431 (2012) CrossRefGoogle Scholar
  13. 13.
    Litherland, K.L., Maguire, P., Proctor, B.A.: A test method for the strength of glass fibres in cement. Int. J. Cem. Compos. Lightweight Concr. 6(1), 39–45 (1984) CrossRefGoogle Scholar
  14. 14.
    Itterbeeck, P., Cuypers, H., Orlowsky, J., Wastiels, J.: Evaluation of the strand in cement (SIC) test for GRCs with improved durability. Mater. Struct. 41(6), 1109–1116 (2007) CrossRefGoogle Scholar
  15. 15.
    Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999) CrossRefGoogle Scholar
  16. 16.
    Johnson, P.A.: Nonequilibrium nonlinear dynamics in solids: state of the art. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 49–69. Springer, New York (2006) CrossRefGoogle Scholar
  17. 17.
    Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995) CrossRefGoogle Scholar
  18. 18.
    Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Academic Press, New York (2003) Google Scholar
  19. 19.
    Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000) CrossRefGoogle Scholar
  20. 20.
    Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010) CrossRefGoogle Scholar
  21. 21.
    Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. Nondestruct. Test. Eval. Int. 44(8), 721–727 (2011) Google Scholar
  22. 22.
    Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011) CrossRefGoogle Scholar
  23. 23.
    Eiras, J.N., Popovics, J.S., Borrachero, M.V., Monzó, J., Payá, J.: Nonlinear impact resonant acoustic spectroscopy to discern mechanical damage in cement based materials. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012) Google Scholar
  24. 24.
    Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2004) Google Scholar
  25. 25.
    Kundu, T.: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization—Engineering and Biomedical Applications. CRC Press, Boca Raton (2012) Google Scholar
  26. 26.
    Dutta, D., Sohn, H., Harries, K.A., Rizzo, P.: A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009) CrossRefGoogle Scholar
  27. 27.
    Aymerich, F., Staszewski, W.J.: Impact damage detection in composite laminates using nonlinear acoustics. Composites, Part A, Appl. Sci. Manuf. 41(9), 1084–1092 (2010) CrossRefGoogle Scholar
  28. 28.
    EN 1170-1:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring the consistency of the matrix, “Slump test” method Google Scholar
  29. 29.
    Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT ’95. Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer, Berlin (1995) CrossRefGoogle Scholar
  30. 30.
    EN 1170-5:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring bending strength, “complete bending test” method Google Scholar
  31. 31.
    Romero, R., Zúnica, L.R.: Métodos Estadísticos en Ingeniería. Universitat Politècnica València, Valencia (2005) Google Scholar
  32. 32.
    Kundu, T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008) Google Scholar
  33. 33.
    ASTM C 215:08. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2008) Google Scholar
  34. 34.
    Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Butterworth-Heinemann, Oxford (2003) Google Scholar
  35. 35.
    Zhu, W., Bartos, P.J.M.: Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method. Cem. Concr. Res. 27(11), 1701–1711 (1997) CrossRefGoogle Scholar
  36. 36.
    Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L., Majumdar, A.J.: Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J. Mater. Sci. 35(18), 4653–4659 (2000) CrossRefGoogle Scholar
  37. 37.
    Visalvanich, K., Naaman, A.E.: Fracture model for fiber reinforced concrete. J. ACI Proc. 80(2), 128–138 (1983) Google Scholar
  38. 38.
    Kundu, T., Jang, H.S., Cha, Y.H., Desai, C.S.: A simple model to predict the effect of volume fraction, diameter, and length of fibers on strength variation of fiber reinforced brittle matrix composites. Int. J. Numer. Anal. Methods Geomech. 24, 655–673 (2000) MATHCrossRefGoogle Scholar
  39. 39.
    Li, V.C., Maalej, M.: Toughening in cement based composites. Part II: fiber reinforced composites. Cem. Concr. Compos. 18, 239–249 (1996) MATHCrossRefGoogle Scholar
  40. 40.
    Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Ciencia y Tecnología del Hormigón (ICITECH)Universitat Politècnica de ValènciaValenciaSpain
  2. 2.Department of Civil Engineering and Engineering MechanicsUniversity of ArizonaTucsonUSA

Personalised recommendations